

COMPENDIUM

Table of contents

About us

Know-how

Standard coating units

- PLATIT 11-Series overvie
- 111 Smart Speed Unit
- 411 Ultra Flexible Unit
- 711 DLC SPUTTER Unit
- 1011 High Volume Unit 11-Series accessories

Coatings

- Cathode configurations
- Coatings for cutting too
- Coatings for chipless for
- Coatings for componen
- Coating propertiesSignature and Dedicate

olghatare and Dedied

Custom Coating Solution

- CCS for technological I
- CCS for Saw Bands
- CCS for Saw Blades
- CCS for Rollers
- CCS for Coin Minting D

Turnkey Solutions

- The TKS concept
- Decoating
- Edge pre-treatment
- Cleaning
- Quality control
- Post-treatment

PLATIT's Lifecycle Mana

Sales network

COMPENDIUM

VISIT US AT: WWW.PLATIT.COM

You can view our units in 3D by scanning the pages marked with this symbol with our AR app.

	4
	11
ew	23 24 27 31 37 41 47
s ols orming nts	53 54 56 58 59 60
ed Coatings	61
ns (CCS) ead vies	73 76 78 80 82 84
	87 88 90 95 100 102 103
gement	105
	110

Global presence

PLATIT is a leading manufacturer of high-tech PVD and PECVD coating units for tools and components. The company is part of the family-owned BCI Blösch Group, an independent Swiss technology group. PLATIT is headquartered in Selzach (Switzerland) and has its own service, support and sales offices in Europe, North America and Asia. These are complemented by a broad network of distributors and partners worldwide. PLATIT has installed coating systems worldwide and maintains close partnerships with its customers.

The variety of tool geometries and applications requires manufacturers of coating equipment to offer a wide range of technical solutions to best fulfill customers' needs. PLATIT offers numerous high-tech standard and custom coating solutions with modular machine designs, high flexibility and proven

PLATIT has installed coating systems for customers in 41 countries around the world:

userfriendliness. Profound competencies in cathodic

ARC, SPUTTER and HiPIMS technology allow PLATIT

to integrate these technologies into hybrid processes,

creating solutions for different applications. PLATIT's

open-source philosophy helps customers to adapt coatings to their specific requirements and individual

needs. With the highest coating performance in

dedicated application fields, PLATIT customers can

differentiate themselves from the market standard.

In addition to coating units, PLATIT offers turnkey

complete solutions for upstream and downstream

cleaning, post-treatment and quality control, making

into the tool manufacturing and regrinding process.

PLATIT systems ideally suited for seamless integration

steps such as decoating, edge pre-treatment,

systems as part of its product portfolio. These include

Core competencies of PLATIT include integrated turnkey solutions, flexible machine concepts, open-source technology and strong customer relationships.

Integration enables in-house coating. Based on our comprehensive understanding of the manufacturing and regrinding of tools, we develop optimized solutions for our customers, which we seamlessly integrate into their existing production process.

Flexibility refers to our business model and our products. Our PVD standard coating units are based on a modular design. With different implemented technologies, they can produce a variety of coatings and deposit complex layers. The coating units are ideally suited for the development of customized coatings and ensure that our customers can set themselves apart from their competitors by creating their own brand image. Furthermore, the Custom Coating Solutions division integrated into our dual business model gives us the flexibility to build customized PVD systems dedicated exclusively to a single customer, use or purpose.

Open-Source technologies inspire innovations. By purchasing our technology, customers can participate in our know-how. Our systems are open to engineers, their parameters and recipes can be changed and further developed if needed. We also value interactions, discussions and sharing knowledge with technology users, as we firmly believe that both parties benefit from transparency and openness.

We believe in strong customer relationships, ensuring our customers are always satisfied. We stand by our customers with worldwide service, support and sales offices as well as with our partners for upstream and downstream processes. Our customers benefit from our network, which matches supply with demand for tool manufacturers, regrinders and coating centers. As a premium provider, we can assist our customers in customer acquisition: we provide support from sampling to the adaption of coatings resulting in innovations. PLATIT does not offer job coating services and therefore avoids entering into competition with its customers.

Milestones

Walter Blösch establishes W. Blösch AG as a company providing gold plating for watch cases and jewelry and manages the company until 1994

Company

1947

R&D

1993 First PLATIT PVD hard coating unit: PL1000

PLATIT AG is founded

Peter and Erich Blösch take over the company as second-generation owners

1994

Founding of PLATIT Inc. in the US

1999

2000

Market launch of PLATIT

Founding of PLATIT Advanced Coating Systems (Shanghai) Co., Ltd., in China

- Release of the TiBor coating
- Release of the TapCT coating

• Release of 3D etch indicator • Release of the Omnis coating Release of the new generation of the PL1011 with Plasma-Nitriding and Double-Pulsed features

2020

- Release of ta-C coatings in Pi411
- PL2011: Custom Coating Solution
- for saw blades • Mega-PiMS: Custom Coating
- Solution for rollers and broaches
- Release of the new generation of the Pi111 Smart Speed Unit

About us

Founding of PIVOT in a joint venture with SHM in the Czech Republic

Turnkey Solutions

• First coating unit with rotating LARC[®] and nanocomposite coatings: Pi80 • PL2001: Custom Coating

2003

Solution for saw blades

Integration of the custom-coating-systems engineering company PLANAR SA into PLATIT AG

2017

Release of the new generation of the Pi411 with additional hybrid LACS[®] technology with simultaneous ARC and SPUTTER processes

Management transition to the third generation of the family-owned company with Patrick, Pascale and Dominik Blösch

• Market launch of the PL711 S-MPuls: Custom Coating Solution for coin minting

Benefits of PLATIT solutions

The turnkey solutions from PLATIT are ideally suited for a seamless integration into the tool manufacturing and regrinding process. For coating centers, PLATIT provides solutions that meet the various challenges of their customers.

In-house PLATIT units for tool manufacturers and regrinders

The integration of coating units into the in-house tool manufacturing or regrinding process offers a variety of advantages:

- **Independence:** with your own turnkey system, the entire production is in your own hands. There are no dependencies or risks on the supply chain.
- Faster delivery times: in-house processes allow production, grinding and coating to take place on the same day, ensuring the shortest possible routes and preventing transport damage.
- Coating know-how for individual applications: a coating center mixes different tools; processes are designed for general use, not specifically for individual applications. In-house, coating thickness and quality can be adapted and controlled.
- **Dedicated Coatings:** PLATIT's open-source technology, which makes it possible for customers to develop their own coatings, guarantees the potential for differentiation from the competition.

Especially tool manufacturers with a high demand for the latest technologies and innovative PVD coatings benefit from the properties of PLATIT's Pi technology in terms of a unique competitive advantage.

As a manufacturer or regrinder you are focused on producing the best tools or components for your

markets, where competition is continuously getting stronger. You have already considered investing in a high-tech PVD coating system to get your tailored high-performance PVD coatings, but besides the tough choice of picking the right technology, you ask yourself how coating your tools and components inhouse pays off in comparison to continuing to use job coating services.

To assist you with this comparison, we provide you the table and graph with examples of an US SME producing 3/8" x 3" shank tools and using two coatings – Omnis and nACo. We show a monthly cost comparison between using job coating services and an in-house PLATIT PVD coating system.

External job coating costs are based on market prices in US and complemented by costs for internal resources needed for order processing and logistics. For the in-house PLATIT coating system, the investments are calculated including the required peripherical devices such as a chiller, a cleaning system and quality control (USD 790,000), financed by leasing (5 years, 20% down payment, 15% residual value); salaries, rent, maintenance, energy and consumables (incl. gas, targets, water, and cleaning solution).

Cashflow	Pi111 PLUS G3				
USD / month	Year 1/ per month 2,268 tools / month	Year 2/ per month 4,470 tools/ month			
Job coating spendings	10,410	19,149			
Internal wages logistics	618	1,104			
Total job coating cashflow	11,028	20,253			
Leasing	10,466	10,466			
Space rent	426	426			
Salaries	1,236	2,208			
Maintenance & wear parts	118	420			
Targets	290	1,036			
Other var. costs	241	431			
Total in-house cashflow	12,777	14,921			
Down-/final payment					
Delta job coating vs. in-house coating	- 1,749	+ 5,333			

This cost comparison reinforces the following statements:

- If you are spending around USD 125,000 annually on job coating, an investment in an in-house PVD system should be your next step
- Investing in PVD technology already generates a positive cash flow shortly after the investment
- After about 2.5 years, the accumulated positive cashflow surpasses the initial investment
- Cash is invested in the company's assets by growing its machine park and is not lost in spending for external job coating service
- Over a six years period, there is the potential to generate a cash surplus of > USD 750,000 in addition to growing the company's assets

4,416 1,080 2,071 862 19,321	4,416 1,320 2,071 862 9,095	52,771 102,891 44,270 1,085,377 276 500
4,416 1,080 2,071 862	1,320 2,071 862	52,771 102,891 44,270
4,416 1,080 2,071	4,416 1,320 2,071	52,771 102,891
4,416 1,080	4,416 1,320	52,771
4,416	4,410	226,806
4 410	4 410	220 200
426	426	30,679
10,466	leasing fully paid	627,960
40,984	40,984	2,134,207
2,208	2,208	113,403
38,776	38,776	2,020,804
Year 5 / per month 10,560 tools / month	Year 6/ per month 10,560 tools/ month	Accumulated Total Cashflow for Year 1–6
	Year 5 / per month 10,560 tools / month 38,776 2,208 40,984 10,466 426 4.410	Year 5/ per month 10,560 tools/ month Year 6/ per month 10,560 tools/ month 38,776 38,776 2,208 2,208 40,984 40,984 10,466 leasing fully paid 426 426 4.410 4.410

Cumulative cashflow in USD: Job coating vs. in-house coating

Detailed case description:

US SME: tool manufacturer, 3/8" x 3" shank tools, Omnis & nACo, max. 208 tools / batch (kicker-system). Year 1 = 17 batch / month; year 5 = 60 batch / month

Costs included: Investment costs for turnkey system including chiller, cleaning system and quality control (USD 790,000), financed by leasing (5 years, 20% down payment, 15% residual value); salaries, rent, maintenance, energy and consumables (incl. gas, targets, water, and cleaning solution)

Benefits of PLATIT solutions

PLATIT units for coating centers

Coating centers have different demands regarding a PVD coating system than tool manufacturers or regrinders. Example requirements are listed below:

- Flexibility: PLATIT standard and custom coating solutions can be programmed with different coating technologies. The systems can deposit PVD and PECVD for various nitride, oxide and DLC coatings without needing to change the targets. True to the open-source approach, they are suited for the development of Dedicated Coatings.
- High-quality coatings: in depositing coatings, PLATIT units combine high performance with very short cycle times.
- Partnerships: PLATIT attaches great importance to strategic partnerships, as both parties benefit

from sharing knowledge, and therefore supports coating centers from sampling to the adaptation of coatings. With worldwide service, support and sales offices as well as a network for upstream and downstream processes, PLATIT always stands by its customers.

- · Customer acquisition: as a premium supplier, PLATIT can assist coating centers in customer acquisi-tion and bring together supply and demand.
- No competition: to PLATIT, it is very important that there is no competition with its own customers. For this reason, it has and will not set up any coating centers in its target markets.

Strengths of PL1011

Our high-volume coating unit PL1011 is especially suited for coating centers. The PL1011 enables coating centers to meet the high-quality demands of their customers. The planar targets, which are considered standard on the market, guarantee a cost-efficient coating.

PL1011:

- Four Planar ARC cathodes, considered standard in the PVD world
- Low costs per tool
- For coating large quantities of different tools
- Suitable for a wide range of application

PVD hard coating

Coating process

A coating is a thin protective film intended to improve the surface properties of a base material in terms of:

- Hardness
- Oxidation resistance
- Friction
- Fracture toughness
- Chemical stability
- and many other properties depending on the applications

Comparison between a human hair and hard coating:

material.

With just a few microns, the coating on a cutting tool

allows for example for faster cutting speeds, resulting

in higher productivity and a longer lifespan of the base

1 µm = 1 / 1000 mm

Comparison of hardness from the softest to the

hardest material:

1. Loading The coating chamber is loaded

2. Evacuating

A high vacuum is required for depositing PVD coatings. The evacuation in PLATIT coating units takes place in two steps:

2.1 The rotary-vane pump generates an inlet pressure in the chamber from 100 to 10⁻² mbar

2.2 The turbomolecular pump generates a high vacuum of approximately 1 × 10⁻⁵ mbar

3. Heating

The chamber is heated up. Process temperatures are about 150–500 °C

Know-how

4. Plasma etching

PLATIT coating units work with three different etching processes:

- LGD[®] (Lateral Glow Discharge)
- Plasma etching with argon, glow discharge
- Metal ion etching (Ti, Cr)

5. Coating deposition

Coating deposition with PVD (ARC, SPUTTER or hybrid LACS® technology) or PECVD processes

6. Cooling

Cooling of the coating chamber

7. Unloading

The coating chamber is unloaded

Coating process

LGD[®] etching

LGD[®] (Lateral Glow Discharge) is the patented etching process in PLATIT's coating units. It takes place before the coating process. Thanks to plasma with high ion density generated by an electron flow between two cathodes, LGD[®] can process even complex surfaces and cavities as well as cutting-edges (e.g. of hobs, molds and dies).

Plasma etching:

Highlights:

- Low antenna effect due to low bias voltage
- Increased mean free path
- Better etching penetration → improved etching of flutes

Use of shutters:

- Targets are cleaned by igniting an ARC behind the shutter on the target surface without contaminating the tools
- The shutter is opened after the cleaning process of the target, which creates ideal conditions for optimal coating adhesion

Comparison of different etching methods:

Tool: milling head; insert ADMX 11T308SR; z = 4 Cooling with emulsion; ap = 8 mm; ae = 22 mm; vc= 80 m/min; f = 0.1 mm/rot TiAlN1x with LGD® and 1 × plasma etching with argon

Increased tool life by LGD® at hobbing

Tool: PM-HSS Workpiece material: 20 MnCrB5 Module: 2.7 mm; downhill milling; dry vc = 220m / min; fa = 3.6 mm / rot Source: 2-tooth test at the University Magdeburg, Germany

3D etch indicator

Our patented 3D etch indicator is a method for visual observation of the plasma etching efficiency and quantification thereof. It allows dedicated processes and parameters for shank tools, gear cutting tools, dies or even for complex geometries.

Highlights:

- Provides a 3D profile of the plasma etching efficiency
- Prevents both, insufficient etching and over-etching
- Boosts the performance of coatings in targeted applications

To obtain a 3D etch profile, the tools are covered with thin films reflecting homogenously a single interference color (e.g., blue). The plasma etching procedure will be carried out. In accordance with interference colors scale [1], observed color changes over etched surfaces depict etching efficiency on each of them. Therefore, a complete 3D etch profile over the substrate with a high resolution (± 5 nm) is generated.

PLATIT's 3D plasma etch indicator enables to select the right combination of etching technologies as well as the parameters and ensures that the selected etching strategy leads to optimum material removal from the substrate surface. While conventional optimization of plasma etching is only feasible for 1D or 2D measurements and requires feedback from performance tests, with the 3D etch indicator, feedback is visible to the naked eye immediately after the plasma etch test.

The graph shows the result of a dedicated etching optimization: the burr height of the micro tool coating with optimized etching is much lower compared to the standard plasma etching.

Interference color scale from [1] Antończak, A. J., et al. (2014). The influence of process parameters on the laser-induced coloring of titanium. Applied Physics A, 115(3),1003–1013

Inhomogeneous removed material

Coating technologies

Comparison

Coatings are usually deposited using ARC or SPUTTER technology. PLATIT hybrid LACS®

additionally offers a fusion of technologies unique in the coating world.

Comparison of the surface:

Coating thickness in all 3 cases: 2 µm TiN-SCIL®

AICrN-LACS

ARC with rotating cathodes

LARC® and CERC® are PLATIT's trademarked brand names for rotating cylindrical cathodes inside the door and at the center of the coating chamber using ARC technology for deposition.

The working principle of all PLATIT's Pi coating units is based on the revolutionary LARC® cathodes (LAteral Rotating Cathode) from the door of the coating chamber.

The Pi411 is upgradable with a CERC® (Central Rotating Cathode).

Target performance comparison:

Know-how

Compared to conventional cathodes, rotating cathodes have several advantages:

- Flexibility in programming the coating composition of unalloyed targets
- A larger effective target surface area (pi × d) at a constant target length h (pi × d × h) prolongs target lifetime (please see the target performance comparison below)
- Excellent process control and stability
- Improved coating adhesion through LGD[®] etching (Lateral Glow Discharge)
- Homogeneous vertical coating thickness distribution in the chamber
- All the rotating cathodes in PLATIT's Pi coating units have a lifetime warranty when regularly exchanged in PLATIT Cathode Exchange Centers

Coating technologies

Hybrid LACS® technology

Hybrid LACS® technology (LAteral ARC with Central SPUTTERING) with simultaneous ARC and SPUTTER processes combines the advantages of LARC® cathodes with those of central SPUTTERING SCIL®:

- High ion density, excellent adhesion
- High deposition rates
- Possibility to dope ARC coatings by SPUTTERING e.g., ceramic or non-conductive materials
- Smoother coatings

Two types of hybrid technology available in Pi411

Simultaneous deposition by LGD® (Lateral Glow Discharge) & SCIL® (SPUTTERED Coating Induced by Lateral Glow Discharge) to increase ion density and affect the coating properties of SPUTTER coatings. **Simultaneous deposition by LARC®** (LAteral Rotating Cathode) & **SCIL®** with the combination of ARC evaporation and SPUTTERING for targeted doping of coating components.

DLC coatings

DLC (diamond-like carbon) is a metastable form of diamond-like amorphous carbon with a significant amount of sp3 bonds.

The higher sp3 bond fraction results in a higher density, hardness (at ambient and elevated temperature), thermal stability, oxidation resistance, higher residual stress and lower thermal conductivity.

Properties and application possibilities:

- Smooth surface
- High mechanical hardness
- Chemical resistance
- Lowest coefficient of friction between the tool and the workpiece
- Good corrosion resistance
- Non-reflective surface
- Suitability for biocompatible products

DLC coatings

DLC coatings are divided into the following categories:

- a-C = hydrogen-free amorphous carbon
- ta-C = tetrahedrally bound hydrogen-free amorphous carbon
- a-C:Me = metal-doped hydrogen-free amorphous carbon (Me = Ti)
- a-C:H = amorphous carbon with hydrogen
- ta-C:H = tetrahedrally bound amorphous carbon with hydrogen
- a-C:H:Si = Si-doped amorphous carbon with hydrogen
- a-C:H:Me = metal-doped amorphous carbon with hydrogen (Me = W, Ti)

Coating structures

Monoblock (MB) consists of a single layer of nitride. This single layer can be applied on an adhesion layer (e.g. TiN + AlTiN-MB). If the adhesion layer and monoblock do not differ, the coating process does not switch between different target materials.

Gradient structure (G) occurs if the composition in the coating continuously changes. The coating consists of an adhesion and a core layer. A typical G coating is TiAIN/AITiN-G.

Nanolayer (NL) is a finer version of a multilayer with a layer thickness of < 20 nm. Coating hardness depends on the coating thickness period. To increase the hardness, a period of approx. 10 nm should be set. All PLATIT coatings with metallic targets have a NL structure.

 Nanocomposite top layer
 Monoblock or gradient core layer

Adhesion layer

TripleCoatings3 from PLATIT consist of an adhesion layer, a core layer (MB or G) and a nanocomposite top layer. A typical coating is nACo, available with the Pi411 coating unit.

Comparison of the most important properties of PLATIT DLC coatings

	DLC (1)	DLC (2)	DLC (3)
PLATIT coating unit	Pi111 Pi411 PL1011	Pi411 PL711 PL1011	Pi411
Composition	a-C:H:Me	a-C:H:Si	ta-C + a-C (over 50 % ta-C)
Process	ARC in C_2H_2 atmosphere	PECVD	SPUTTERING
Coating architecture	As top layer	As stand-alone or as top layer	As stand-alone
Doping	Ti or Cr	Si	None
Coating thickness [µm]	< 1*	< 3	0.3–1
Young's modulus [GPa]	200*	250	350-450
Nano-hardness [GPa]	< 20*	> 25	35-55
Roughness	Ra ~ 0.1μm* Rz ~ coating thickness*	Ra ~ 0.03 µm Rz ~ coating thickness	Ra ~ 0.06 µm Rz ~ coating thickness
Coefficient of friction [µ] PoD (at RT, 50% humidity)	~ 0.15*	~ 0.1-0.2	~ 0.1
Max. service temperature [°C]	400	400	450
Coating temperature [°C]	< 400	< 220	< 100
Main application	Improvement of the run-in proces of a tool, lubrication by formation of transfer films	Components, punches and dies	Tools

* As a top layer

Multilayer (ML) also consists of an adhesion and a core layer. After the adhesion layer, several (multiple) layers are deposited in succession. These multiple layers create a sandwich structure that absorbs the cracks in the sublayers. The coating is tougher but not as hard as a monoblock. The thickness of a single layer in ML is typically 50–100 nm, as for example in AlCrN-ML.

Nanocomposites (NC) consist of an adhesion and a core layer. The core layer consists of 2 phases: hard, nanocrystalline grains (e.g. TiN, TiAIN or AlCrN grains) are embedded in an amorphous SiN matrix, which prevents the grain from growing and creates the nanocomposite structure. Column growth is prevented and a fine crystalline/amorphous structure is formed. One example is nACo.

QuadCoatings4 from PLATIT receive a fourth block for special purposes in addition to the triple structure. These coatings consist of an adhesion layer, a first core layer of the gradient type, a second core layer of the multilayer type and a nanocomposite top layer. A typical example is TiXCo4.

Coating structures

Comparison of the structure

A comparison with sand on a beach can serve to illustrate the increase in hardness achieved by the nanocomposite structure: normally, a person's foot will sink into dry sand. If the sand is wet, their foot will not sink in as far, because the space between the grains is filled with water. The surface has a higher resistance and is therefore harder.

Hardness

Heat resistance comparison of nanocomposite:

PLATIT 11-Series overview

PLATIT offers high-tech PVD and PECVD coating units. Depending on the requirements, we equip them with the following technologies:

- ARC in DC or pulsed mode
- SPUTTER in DC, pulsed or HiPIMS mode
- Hybrid technology with simultaneous ARC and SPUTTER processes

PVD standard coating units from PLATIT are perfectly suited for coating tools and components of standard market sizes. They allow for short cycle times with high-quality coatings and can be flexibly programmed

	Pi111	Pi411	PL711	F
Max. coating volume [mm]	ø 353 × H 498	ø 540 × H 500	ø 600 × H 805	Ø
Max. load [kg]	160	200	250, higher weight upon request	7
Load and cycle times of shank tools (2 µm): ø 8 × 70 [mm]*	288 pcs., 4-5 h	504 pcs., 5-6 h	540 pcs., 10 h	1, 7
ARC technology	2 × LARC [®] PLUS cathode	3 × LARC® cathode, upgradable with 1 × CERC® cathode	-	4
SPUTTER technology	-	Upgradable with 1 × central SCIL® cathode	2 × Planar cathode	-
Hybrid-LACS [®] technology with simultaneous ARC & SPUTTER processes	-	Yes, upgradable	-	-
DLC	Upgradable for DLC1 with TiCN option	DLC1, upgradable for PECVD (DLC2) and for ta-C sputtered (DLC3)	PECVD (DLC2)	C
ΟΧΙ	-	Upgradable for oxide coatings	-	-
Nitriding	-	-	-	Y

* Average cycle times in an ongoing production with max. number of cathodes in use.

with different coating structures. Standard coating units can deposit PVD and PECVD for various nitride, oxide and DLC coatings.

PL1011

ø 715 × H 805

750

1,008 pcs., 7–8 h

• Planar cathode, upgradable for Double-Pulsed feature

DLC1, upgradable for PECVD (DLC2)

Yes, upgradable

ากก

PLATIT® 22-Series

200

7077

PLATIT® 77-Series

Standard coating units

111 Smart Speed Unit

W

Solution

Service

111 Smart Speed Unit

Specifications

Etching technologies applied:

- LGD[®] (Lateral Glow Discharge)
- Plasma etching with argon, glow discharge
- Metal ion etching (Ti, Cr)

Load and cycle times:

- Max. coating volume: 353 × H 498 [mm]
- Max. coating height with defined coating thickness: 414 mm
- Max. load: 160 kg

4-5 batches/day for*:

Shank tools (2 µm):	ø 8 × 70 [mm]	288 pcs.	4-5h
Inserts (3μm):	ø12 × 4 [mm]	2736 pcs.	5-6h
Hobs (4µm):	ø 80 × 180 [mm]	8 pcs.	6-7h
Hobs (4µm):	ø 75 × 100 [mm]	40 pcs.	6-7h

* Average cycle times in an ongoing production with max. number of cathodes in use.

Modular carousel systems:

• Dual-rotation kicker carousel or triple-rotation gearbox system

Software:

- Simple use and maintenance
- PLATIT SmartSoftware (PC and PLC system)
- Modern control system with touch screen
- Data recording and real-time display of process parameters and flow
- Manual and automatic process control
- Remote diagnostics and maintenance

Machine dimensions:

• Footprint: W 2,000 × D 1,550 × H 2,250 [mm]

PLATIT® 11- Series

Standard coating units

411 Ultra Flexible Unit

The broad variety of configuration options as well as the flexibility made possible by the rotating cathodes allows for the development of customer-specific top-performance coatings. Thus, this coating unit addresses the needs of customers who are seeking maximum flexibility with a full range of coating technologies easily accessible in one machine.

A LARC[®] Cathode
B LARC[®] Cathode
C LARC[®] Cathode
D CERC[®]/SCIL[®] Cathode
E Carousel

Due to its modular design and the range of available technologies, the Pi411 PLUS is the world's most flexible coating unit. Its basic configuration as an ARC unit with three rotating cathodes inside the door can be modularly upgraded on-site with an ARC or SPUTTER central cathode as well as with PECVD and OXI processes. Unique to this unit is also the availability of LACS® hybrid technology, which allows for the simultaneous deposition of coatings using both ARC and SPUTTER technology.

Standard coating units

411 Ultra Flexible Unit

Sample cathode configurations

Standard coating units

411 Ultra Flexible Unit

Specifications

Etching technologies applied:

- LGD[®] (Lateral Glow Discharge)
- Plasma etching with argon, glow discharge
- Metal ion etching (Ti, Cr)

Load and cycle times:

- Max. coating volume: ø 540 × H 500 [mm]
- Max. coating height with defined coating
- thickness: 414 mm
- Max. load: 200 kg

4-5 batches/day for*:

Shank tools (2 µm):	ø 8 × 70 [mm]	504 pcs.	5-6h
Inserts (3μm):	ø12 × 4 [mm]	4,788 pcs.	6–7h
Hobs (4µm):	ø 80 × 180 [mm]	14 pcs.	7–8h
Hobs (4µm):	ø 80 × 100 [mm]	56 pcs.	7-8h

*Average cycle times in an ongoing production with max. number of cathodes in use.

Modular carousel systems:

• 1 to 14 axes

Software:

- Simple use and maintenance
- PLATIT SmartSoftware (PC and PLC system)
- Modern control system with touch screen
- Data recording and real-time display of process parameters and flow
- Manual and automatic process control
- Remote diagnostics and maintenance

Machine dimensions:

• Footprint: W 2,950 × D 1,900 × H 2,400 [mm]

PLATIT® 77-Series

711 DLC SPUTTER Unit

Technologies applied: • 2 × Planar SPUTTER cathode with HiPIMS technology • Dense plasma with a high ionization degree in the carousel generates homogeneous coatings and reaches a high deposition rate. Coatings from the PL711 provide outstandingly smooth surfaces with a high density, hardness and excellent adhesion. PLATITS. AR I = J111

711 DLC SPUTTER Unit

Specifications

Etching technologies applied:

- LGD[®] (Lateral Glow Discharge)
- Plasma etching with argon, glow discharge
- Metal ion etching (Ti, Cr)

Deposition types:

- SPUTTER nitride coatings
- Reactive and non-reactive processes
- Targets: Ti, Cr
- Coating temperature up to 350°C
- SPUTTER Cr and PECVD a-C:H:Si
- DLC2 (PECVD)
- Targets: Cr
- Coating temperature: 180 220 [°C]

Load and cycle times:

- Max. coating volume: ø 600 × H 805 [mm]
- Max. coating height with defined coating thickness: 500 mm
- Max. load: 250 kg, higher weight upon request

2 batches / day for*:

Shank tools (2 µm):	ø 8 × 70 [mm]	DLC2	540 pcs.	8.5 h
Molds and dies (3 µm):	≤ ø150 x 150 [mm]	CrN	12 pcs.	12 h
Sliding mold inserts (3 µm):	25 × 150 × 10 [mm]	DLC2	72 pcs.	9-10 h

* Average cycle times in an ongoing production with max. number of cathodes in use.

Modular carousel systems:

• 3 or 6 or 9 axes

Software:

- Simple use and maintenance
- PLATIT SmartSoftware (PC and PLC system)
- Modern control system with touch screen
- Data recording and real-time display of process parameters and flow
- Manual and automatic process control
- Remote diagnostics and maintenance

Machine dimensions:

• Footprint: W 3,450 × D 2,250 × H 2,595 [mm]

PLATIT® 11- Series

Standard coating units

1011 G4 High Volume Unit

As the backbone of every high-volume coating center, PL1011 G4 combines maximum production availability with a user-friendly interface and an efficient maintenance concept. It's equipped with four Planar cathodes utilizing the latest ARC technology for the deposition of all PLATIT standard coatings in consistently high quality.

A Planar Cathode B Planar Cathode **C** Planar Cathode D Planar Cathode E Carousel

The PL1011 G4 represents the next generation of a robust PVD coating unit from PLATIT for customers who seek a combination of process reliability and high-quality coatings at a low cost per tool. Its new design speaks for changes and modernization: the simpler construction enables better service; the new technological features such as the Plasma-Nitriding and Double-Pulsed options improve the coating properties and process for various applications.

Standard coating units

1011 G4 High Volume Unit

Plasma-Nitriding feature

The PL1011 G4 with Plasma-Nitriding features a thermochemical plasma nitriding process integrated in the PVD coating process. After loading, a high vacuum is created, the chamber is heated, then the substrates are nitrided, a proprietary PLATIT etching process is switched on, and only then the suitable PVD coating is deposited.

Plasma nitriding builds a hardness gradient underneath the PVD coating to ensure homogeneous transition from the relatively soft substrate to the very hard PVD layer. This transition is the major challenge in metal forming applications with standard cold forming steels such as 1.2379/D2.

Highlights:

- Better coating adhesion
- Increased substrate surface hardness
- Improved wear resistance as well as resistance to deformation of the nitrided substrate
- · Extending production lifetime of molds and dies, in turn lowering tooling costs

Double-Pulsed feature

PLATIT PL1011 G4 with Double-Pulsed feature is intended for customers with large coating volumes demanding the highest possible throughput. While faster deposition rates often result in rougher coatings, PL1011 G4 Double-Pulsed does not sacrifice either coating quality or surface finish, keeping all the advantages of ARC processes.

With an extended power supply bank, PL1011 G4 Double-Pulsed allows eight ARC power supplies to run simultaneously in both DC and pulsed modes, with a wider race track on the target leading to an improved target utilization.

AICrN, deposited on standard substrate

าดาป

AlCrN, deposited on nitrided substrate

Improved coating adhesion and less plastic deformation due to increased substrate hardness.

Highlights:

- Advanced ARC technology results in high productivity with 30% faster coating deposition time
- Excellent coating quality and surface finish
- Improved target utilization

1011 G4 High Volume Unit

Specifications

Etching technologies applied:

- LGD[®] (Lateral Glow Discharge)
- Plasma etching with argon, glow discharge
- Metal ion etching (Ti, Cr)

Load and cycle times:

- Max. coating volume: ø 715 × H 805 [mm]
- Max. coating height with defined coating thickness: 711 mm
- Max. load: 750 kg; higher weight upon request

3-4 batches/day for*:

Shank tools (2 µm):	ø 8 × 70 [mm]	1,008 pcs.	7-8h
Inserts (3 µm):	ø12 × 4 [mm]	11,760 pcs.	9–10 h
Hobs (4µm):	ø 80 × 180 [mm]	36 pcs.	7-8h
Hobs (4µm):	ø 80 × 100 [mm]	72 pcs.	7–8h

* Durchschnittliche Zykluszeiten in einer laufenden Produktion mit einer maximalen Anzahl von Kathoden im Einsatz.

Modular carousel systems:

• 1 to 12 axes

Software:

- PLATIT SmartSoftware (PC and PLC system) with touch screen
- Statistics and help function via user interface
- Data recording and real-time display of process parameters and flow
- Manual and automatic process control
- Remote diagnostics and maintenance
- Newly designed recipe editor

Machine dimensions:

- Footprint: W 4,000 × D 2,250 × H 2,350 [mm]
- Footprint Double-Pulsed option:
- W 4,700 × D 2,250 × H 2,350 [mm]

11-SERIES ACCESSORIES

PLATIT® 10-Series

Standard coating units

Carousels

Holders

Disc with gears

Gearbox with triple rotation

Quad gearbox for quad rotation

Loading capacities

Pi111

Tool type	Tool diameter	Tool length	Satellites	Discs / satellite	Holders/ disc	Tools / holder	Tools/ disc	Tools / batch	Holder type
Shaft Tool	6mm	50 mm	4	4	5	9	45	720	G
	6 mm	50 mm	4	4	8	4	32	512	D
	6mm	50 mm	4	4	18	1	18	288	А
	8mm	60 mm	4	4	18	1	18	288	А
	10 mm	70 mm	4	4	18	1	18	288	А
	20 mm	100 mm	4	3	12	1	12	144	А
Insert	12 mm	4mm	4	38	18	1	684	2,736	С
Hob	80 mm	100 mm	4	4	1	1	1	16	F
	75 mm	100 mm	10	4	1	1	1	40	F

PL711

Tool type	Tool diameter	Tool length	Satellites	Discs/ satellite	Holders/ disc	Tools/ holder	Tools/ disc	Tools/ batch	Holder type
Shaft Tool	6mm	50 mm	6	5	5	9	45	1,350	G
	6mm	50 mm	6	6	8	4	32	1,152	D
	6mm	50 mm	6	6	18	1	18	648	А
	8mm	60 mm	6	5	18	1	18	540	А
	10 mm	70 mm	6	5	18	1	18	540	А
	20 mm	100 mm	6	4	12	1	12	288	A
Insert	12 mm	4mm	6	38	18	1	684	4,104	С
Molds & dies	160 mm	130 mm	3	4	1	1	1	12	F
Sliding parts with DLC2	25 × 10 mm	130 mm	3	4	4	1	4	48	F

Pi411

11411									
Tool type	Tool diameter	Tool length	Satellites	Discs/ satellite	Holders/ disc	Tools/ holder	Tools/ disc	Tools/ batch	Holder type
Shaft Tool	6mm	50 mm	7	4	5	9	45	1,260	G
	6mm	50 mm	7	4	8	4	32	896	D
	6mm	50 mm	7	4	18	1	18	504	А
	8mm	60 mm	7	4	18	1	18	504	А
	10 mm	70 mm	7	4	18	1	18	504	А
	20 mm	100 mm	7	3	12	1	12	252	А
Insert	12 mm	4mm	7	38	18	1	684	4,788	С
Hob	80 mm	100 mm	7	4	1	1	1	28	F
	80 mm	100 mm	14	4	1	1	1	56	F

PL1011

Tool type	Tool diameter	Tool length	Satellites	Discs/ satellite	Holders/ disc	Tools/ holder	Tools/ disc	Tools/ batch	Holder type
Shaft Tool	6mm	50 mm	4	7	15	4	60	1,680	E
	6mm	50 mm	4	7	42	1	42	1,176	В
	8mm	60 mm	4	7	36	1	36	1,008	В
	10 mm	70 mm	4	6	30	1	30	720	В
	20 mm	100 mm	4	5	23	1	23	460	В
Insert	12 mm	4mm	4	2×35	42	1	1470	11,760	С
Hob	140 mm	100 mm	10	6	1	1	1	60	F
	80 mm	100 mm	12	6	1	1	1	72	F

Holder type:

A Tool in a sleeve, driven by a gearboxB Tool in a sleeve, driven by a kicker

C Insert with a hole, speared on a rod

D Tool in a revolver, driven by a gearbox

E Tool in a revolver, driven by a kicker F Hob on a satellite/rod

G Tool in a sleeve, driven by a quad gearbox

Process cost comparison

When calculating an investment in a PVD coating turnkey system, there are several variables to be taken into consideration. On this page we give you further insights about how fixed and variable costs add up for different PLATIT coating systems. We are using the case of a German SME coating 10 × 70 mm shank tools with three different coatings – AITiN, Omnis and TiXCo3.

The diagram on the right visualizes that the majority of the batch costs of a PVD system are determined by the fixed costs. The main cost drivers are depreciation costs for the investment and the personnel costs for the operators. The variable costs, on the other hand, typically amount to less than one sixth of the total operating costs. In particular, the cost of the targets account for only 15-20% of the total cost per batch.

Cost per batch [CHF]:

Cost per tool [CHF]:

The diagram on the left visualizes the breakdown of cost per tool in different PLATIT coating systems. As it is shown in the diagram, the cost per tools decrease significantly in large-sized PVD coating units due to scale effects.

Target cost per tool

Variable cost per tool (without target cost)

Fixed cost per tool

Detailed case description:

German tool manufacturer, 10 × 70 mm shank tools Coatings: AITiN (40%), Omnis (40%), TiXCo3 (20%) Costs included: Fixed costs: Investment in PVD system incl. production accessories, depreciation (8 years, 240 working days per year), operator wages, rent and maintenance

Other variable costs: energy and chemicals

COAT

PLATIT® 11-Series

Cathode configurations

		111 2 × LARC [®] PLUS	, 11-1-1-	411 3 × LARC [®] ,	lahla	711 2 × Planar HiPIMS
	Ocations	Ontion ava		additional options ava	Cathadaa	
	Coatings	Option		Option		
1	LIN	Standard	-, 11	ECO	11, -, -	11, 11
2	TION	TON		SCIL	LGD, -, -, ITSCIL	
2	TICN	TICN	-,	ECO	, -, -	
3	LIAIN	Standard	Al, Li	ECO	I I, AI, -	
				TURBO	Ti, Al, -, AlTi33	
4	TiAICN			ECO	Ti, Al, -	
5	AITIN	Standard	Al, Ti	ECO	Ti, Al, -	
				TURBO	Ti, Al, -, AlTi33	
6	CrN	Standard	-, Cr	ECO	Cr, -, -	Cr, Cr
7	CrTiN	Standard	Cr, Ti	ECO	Ti, -, Cr	
8	ТарСТ			SCIL	LGD, -, -, CrTi50 SCIL	
9	ZrN	Standard	Zr, Ti	ECO	Ti, -, Zr	
10	AlCrN			LACS	-, -, Cr, AlCr30 SCIL	
11	Omnis	Standard	Al, Cr	ECO	Al, AlCr30, Cr	
				ECO	AlCr35, AlCr35, AlCr35	
12	AlTiCrN	Standard	AlCr30, Ti	ECO	Ti, Al, Cr	
13	nACo	Standard	AlSi12, Ti	ECO	Ti, AlSi18, -	
				TURBO	Ti, AlSi18, -, AlTi33	
14	nACRo	Standard	AlSi12, Cr	ECO	-, AlSi18, Cr	
				TURBO	-, AlSi18, Cr, AlTi33	
15	TiXCo3	Standard	AlTi33, TiSi20	ECO	Ti, Al, TiSi20	
				TURBO	Ti, Al, TiSi20, AlTi33	
16	TiXCo4			TURBO	Ti, Al, TiSi20, AlCr30	
17	PSiX			ECO	Ti, Al, TiSi20	
18	BorAC			ECO	Al, AlCrB20-10, Cr	
				ECO	AICr35, AICrB20-10, AICr35	
19	TiBor			LACS	Ti, -, -, TiB2 SCIL	
20	DLC1: TiCN + a-C:H:Me	TICN	-, Ti	ECO	Ti, -, -	
21	DLC2: TiN + a-C:H:Si			SCIL & DLC	LGD, -, -, Ti SCIL	
22	DLC2: CrN + a-C:H(:Si)			DLC	-, -, Cr	Cr, Cr
23	DLC3: Cr+ta-C/a-C			LACS	-, -, Cr, C SCIL	
24	nACoX			TURBO & OXI	Ti, AlSi18, AlCr45, AlTi33	
-						

Further coatings and cathode configurations on request

1011 4 × Planar ARC, additional options available

Cathodes

Ti, -, Ti, -

Ti, -, Ti, -Ti, Alti40, TiAl50, Alti40

Ti, TiAl25, Ti, TiAl25 Ti, AlTi40, AlTi33, AlTi40

Cr, -, Cr, -Ti, Cr, Ti, Cr

Ti, Zr, Ti, Zr

-, AlCr36, AlCr36, AlCr36

Cr, AlTi40, AlCr36, AlTi40 TiSi20, AlTi40, TiSi25, AlTi40

TiSi20, AlTi40, TiSi25, AlTi40

TiSi20, AlTi40, TiSi25, AlTi40 -, AlCr36, AlCrB20-10, AlCr36

Ti, -, Ti, -

-, Cr, -, Cr

Coatings for cutting tools

			Turning	Milling			Gear cutt	ing			Sawing		Drilling		Deep hole drilling	Reaming	Broaching	Tapping	
WORKPIECE MATERIAL			Inserts	Inserts	Shank tools	Micro tools	Hobs	Pinion cutting	Skiving	Fly cutters, stick blades	Saw blades	Band saws	Drilling	Micro tools				Taps, thread cutters	Tap forming, thread forming
Steels	Dry	A B	nACo AlTiN	Omnis BorAC	Omnis BorAC	AICrN -	Omnis BorAC	Omnis BorAC	Omnis BorAC	TiXCo4 AlTiCrN	AlTiCrN AlTiN	nACo TiAICN	AITIN PSIX	AlTiN TiXCo3	AITiN TiXCo3	nACo TiXCo3	TiN TiCN	TiN TiCN	TapCT TiCN
	Wet	A B	nACo AlTiN	AlTiCrN Omnis	AlTiCrN Omnis	AICrN -	Omnis AlTiCrN	Omnis AlTiCrN	Omnis BorAC	TiXCo4 AlTiCrN	AlTiCrN AlTiN	nACo TiAICN	AITIN PSiX	AITiN TiXCo3	AlTiN TiXCo3	nACo TiXCo3	TiN TiCN	TiN TiCN	TapCT TiCN
Steels hardened < 55 HRC	Dry/Wet	A B	TiXCo4 nACo	TiXCo4 nACo	TiXCo4 nACo	TiXCo3 -	-	-	TiXCo4 BorAC	-	nACo AlTiN	nACo AlTiN	PSiX nACo	TiXCo3 nACo	-	nACo TiXCo3	-	-	-
Steels hardened > 55 HRC	Dry	A B	TiXCo3 PSiX	TiXCo3 PSiX	TiXCo3 PSiX	TiXCo3 -	-	-	TiXCo4 PSiX	-	-	-	TiXCo3 PSiX	TiXCo3 -	-	-	-	-	-
	Wet	A B	PSiX nACo	PSiX nACo	PSiX nACo	TiXCo3 -	-	-	TiXCo4 PSiX	-		-		-	-	-	-	-	-
Stainless steel < 45 HRC	Dry	A B	nACo AlTiN	nACo AlTiN	nACo AlTiN	nACo -	-	-	-	-	AITIN TIAICN	nACo TiAICN	AITiN TiXCo3	AlTiN TiXCo3	AITiN TiXCo3	nACo TiXCo3	-	TiN TiCN	TapCT TiCN
	Wet	A B	PSiX AlTiN	PSiX AlTiN	PSiX AlTiN	nACo -	-	-	-	-	AITIN TIAICN	nACo TiAICN	AITiN TiXCo3	AlTiN TiXCo3	AITiN TiXCo3	nACo TiXCo3	-	TiN TiCN	TapCT TiCN
Stainless steel > 45 HRC	Dry	A B	TiXCo3 nACo	TiXCo3 PSiX	TiXCo3 PSiX	TiXCo3 -		-	-	-		-	AITiN TiXCo3	AlTiN TiXCo3	AlTiN TiXCo3	nACo TiXCo3	-	TiN TiCN	-
	Wet	A B	TiXCo3 TiAICN	TiXCo3 PSiX	TiXCo3 PSiX	TiXCo3 -	-	-	-	-	-	-	AITiN TiXCo3	AlTiN TiXCo3	AITiN TiXCo3	nACo TiXCo3	-	TiN TiCN	-
Superalloys Ni-based	Dry/Wet	A B	nACoX AlTiN	nACoX PSiX	PSiX TiXCo4	TiXCo3 -	-	-	-	-	AlTiCrN AlTiN	AlTiCrN AlTiN	TiXCo4 nACoX	-	-	-	-	TiCN TiAICN	- -
Superalloys Ti-based	Dry/Wet	A B	nACo TiBor	nACo TiBor	nACo TiBor	nACo TiBor	-	-	-	-	AlTiCrN AlTiN	AlTiCrN AlTiN	TiXCo3 AITiN	-	-	TiBor PSiX	-	TiCN TiAICN	-
Cast iron	Dry/Wet	A B	nACo AlTiN	nACo AlTiN	nACo AlTiN	nACo	-	-	-	-		1	TiXCo3 nACo	1	TiN TiCN	TiXCo3 nACo	-	TiCN TiAICN	-
Aluminium Si > 12%	Dry/Wet	A B	nACRo TiBor	nACRo TiBor	nACRo TiBor	nACRo TiBor	-	-	-	-	nACRo AlTiCrN	nACRo AlTiCrN	nACRo TiBor	nACRo TiBor	-	TiBor PSiX	-	TiCN TiAICN	-
Aluminium Si < 12%	Dry/Wet	A B	DLC3 TiBor	DLC3 TiBor	DLC3 TiBor	DLC3 TiBor	-	-	-	-	DLC3 ZrN	ZrN -	TiBor ZrN	TiBor ZrN	-	TiBor DLC3	-	TiCN TiBor	TiN ZrN
Copper, bronze, brass	Dry/Wet	A B	CrN DLC2	CrN DLC2	CrN DLC2	CrN DLC2	-	-	-	-	CrN -	CrN -	TiAICN CrN	-	-	TiXCo3 nACo	-	TiCN TiAICN	TiN ZrN
Plastic	Dry/Wet	A B	-	-	DLC3 TiBor	-	-	-	-	-	-	-	TiXCo3 DLC2	1	-	-	-	-	-
Graphite	Dry	A B	DLC3 -	DLC3 -	DLC3	DLC3 -		-	-	-	-	-	DLC3 TiXCo4	DLC3 TiXCo4	-	-	-	-	-
	Wet	A B	TiXCo4 DLC3	TiXCo4 DLC3	TiXCo4 DLC3	TiXCo3 DLC3	-	-	-	-	-	-	TiXCo4 DLC3	TiXCo4 DLC3	-	-	-	-	-
Carbon fiber reinforced polymer	Dry/Wet	A B	-	-	DLC3 TiXCo4	DLC3 TiXCo3	-	-	-	-	DLC3 -	-	DLC3 TiXCo3	DLC3 TiXCo3	-	-	-	-	-
Wood	Dry/Wet	A B	-	DLC2 CrN	DLC2 CrN	-	-	-	-	-	DLC2 CrN	-	DLC2 TiXCo3	-	-	-	-	-	-

A primary recommendation B secondary recommendation

Coatings for chipless forming

Coatings for components

		Fine- blanking	Punching	Injection mo	olding	Forming, embossing	Deep drawing	Extrusion
TOOL MATERIAL				Plastic	Aluminum			
HSS	A B	FeinAl Plus* FeinAl*	FeinAl Plus* FeinAl*	-	-	CrN TiBor	FeinAl* FeinAl Plus*	nACRo FeinAl*
Carbide	A B	FeinAl Plus* FeinAl*	FeinAl Plus* FeinAl*	-	-	-	-	-
Steels unalloyed	A B	-	-	CrN TiN	AlTiCrN nACRo	-	-	-
Steels harde- ned	A B	FeinAl Plus* FeinAl*	FeinAl Plus* FeinAl*	CrN TiN	AlTiCrN nACRo	CrN TiBor	FeinAl* FeinAl Plus*	nACRo FeinAl*
Aluminum Si > 12%	A B	-	-	CrN TiN	-	CrN TiBor	-	-
Aluminum Si < 12%	A B	-	-	-	-	CrN TiBor	-	-
Copper, bronze, brass	A B		-	-	-	CrN TiBor	-	-

A primary recommendation B secondary recommendation

* Trademark owned by Feintool Group

		Machine parts ¹	Medical co	mponents ²		Tribology	Decorative materials
WORKPIECE MATERIAL			Medical implants	Surgical, dental instruments	Anti-bacterial medical components		
Steels unalloyed < 1000 N/mm ²	A B	-	-	-	-	DLC2 DLC3	-
Steels unalloyed > 1000 N/mm ²	A B	-	-	-	-	DLC2 DLC3	-
Steels hardened < 55 HRC	A B	CrTiN -	-	-	-	DLC2 DLC3	-
Steels hardened > 55 HRC	A B	CrTiN -	-	-	-	DLC2 DLC3	-
Stainless steel	A B	-	-	DLC2 DLC3	TiN-AB DLC-AB	DLC2 DLC3	Custom -
Stainless steel > 45 HRC	A B	-	-	-	-	DLC2 DLC3	Custom -
Superalloys Ni-based	А	-	-	-	-	DLC2	-
Superalloys Ti-based	A B	-	Ti2N ZrN	DLC3 DLC2	-	DLC2 -	-
Cast iron	А	CrN	-	-	-	-	-
Aluminum Si < 12%	А	CrN	-	-	-	-	-
Copper	A B	-	-	-	TiN-AB DLC-AB	-	Custom -
Bronze, brass	A B	-	-	-	TiN-AB DLC-AB		Custom -

A primary recommendation

B secondary recommendation

¹ in abrasive and corrosive environment such as gears, water pumps, tool holders ²following PLATIT coatings are tested for biocompatibility and certified accordingly: AITiN, CrN, DLC, TiCN, TiN, ZrN

Coating properties

		Color	Nano-hard- ness [GPa] by Fisher Nanoindentor	Coating thickness [µm]	Coefficient of friction [µ] PoD (at RT, 50% humidity)	Max. service temperature [°C]
1	TiN	Gold	24-26	1–10	0.4	600
2	TICN	Grey	36-38	1–3	0.25	450
3	TiAIN	Violet grey	36-38	1–5	0.5	700
4	TIAICN	Red violet	34-36	1–5	0.25	450
5	AITIN	Blue grey	36-38	1–5	0.6	900
6	CrN	Silver	21-23	1–10	0.5	700
7	CrTiN	Satin silver	28-30	1-10	0.4	700
8	ТарСТ	Silver	28-30	1–5	0.4	700
9	ZrN	White gold	21-23	1–5	0.4	550
10	AICrN	Grey	36-38	1–5	0.6	900
11	Omnis	Grey/Anthracite	33-35	0.3-6.0	0.5	1,100
12	AlTiCrN	Grey	36-38	1–5	0.5	900
13	nACo	Blue violet	39-41	1-4	0.5	1,200
14	nACRo	Grey	39-41	1-4	0.5	1,100
15	TiXCo3	Copper	42-44	1-4	0.4	1,100
16	TiXCo4	Grey	42-44	1-4	0.4	1,100
17	PSiX	Red brown	42-44	1-4	0.4	1,100
18	BorAC	Grey	38-40	1–5	0.5	900
19	TiBor	Satin silver	45	1–5	0.4	600
20	DLC1: TiCN + a-C:H:Me	Anthracite	36/20	1–3	0.1-0.2	400
21	DLC2: TiN + a-C:H:Si	Anthracite	> 25	1–3	0.1-0.2	400
22	DLC2: CrN + a-C:H(:Si)	Anthracite	> 25	1–3	0.1-0.2	400
23	DLC3: Cr + ta-C / a-C in Pi411	From rainbow colors to anthracite	45-50	0.3–1	0.1	450
24	nACoX	Dark grey	30-32	4-10	0.5	1,200

The given physical values may vary for different coating structures (mono-, gradient-, multi- and nanolayers).

If a coating can be deposited with ARC, SPUTTER and LACS® option, the properties of the ARC option are given.

Signature and **Dedicated Coatings**

PLATIT's Signature Coatings are exclusively developed by our R&D teams using the unique features of the PLATIT technology. They combine years of experience and know-how in the field of coating development with the latest technical innovations.

Dedicated Coatings

Dedicated Coatings from PLATIT are tailored to individual needs of specific application and developed together with the customer for the customer. True to the open-source approach of PLATIT, the processes and recipes are open to engineers to enable innovations to accelerate.

Development of new Dedicated Coatings

PLATIT's R&D team inspects the geometry of the tool and considers different parameters for the development of Dedicated Coatings.

Our Signature Coatings promise the highest performance for their dedicated applications in the field of cutting, forming and tribological components. PLATIT customers can differentiate themselves from competitors and stand out from the market standard with the deposition of Signature Coatings.

Our Dedicated Coatings allow a variety of process parameters, configurations of the cathodes, their positions, deposition technology as well as pre- and post-treatments, depending on the adaption needs. These coatings are not limited to a certain application, going further from the field of cutting, forming and tribological components towards further industries and requirements.

Signature Coating TiXCo

TiXCo3 and TiXCo4

As our hardest nanocomposite, TiXCo3 is especially suitable for hard machining. It can be used at very high temperatures and is therefore suitable for finishing processes in milling, drilling and reaming. TiXCo4 is used for broadband applications.

Characteristics in cutting:

Highlights:

- TiXCo3:
- High surface quality
- Extremely hard and very wear-resistant
- For super-hard machining
- TiXCo4:
- Wide range of application and use

Specifications

Color	copper with TiXCo3 grey with TiXCo4
Nano-hardness [GPa]	42-44
Coefficient of friction [µ] PoD (at RT, 50% humidity)	0.4
Coating thickness [µm]	1-4
Max. service temperature [°C]	1,100
Coating temperature [°C]	450-500
111 PLUS G3	TiXCo3 (AlTi33, TiSi20)
411 PLUS ECO	TiXCo3 (Ti, Al, TiSi20)
411 PLUS TURBO	TiXCo3 (Ti, Al, TiSi20, AlTi33) TiXCo4 (Ti, Al, TiSi20, AlCr30)
1011 G4	TiXCo3 (TiSi20, AlTi40, TiSi25, AlTi40)

Signature Coating PSiX

Universal hard machining coating

PSiX is a new PLATIT nanocomposite coating with a super-hard top layer. PSiX is based on TiXCo3 but has a silicon-free AlTiN base. Therefore, the aluminum content of PSiX is higher, which increases the coating's thermal stability. The coating is temperature optimized and therefore excellent for hard machining processes like finishing and roughing.

Ball nose end mill in 61 HRC:

Lifetime in % at VBmax = 200 m

Tool: ball nose end mill: D10 Workpiece material: 12379: 61 HBC ap = 0.2 mm; ae = 0.5 mm; vc = 182 m / min; fz = 0.14 mm . Source: GFE, Germany

Milling in X210Cr13 with solid carbide end mill D6:

Tool: solid carbide end mill; D6 Workpiece material: X210Cr13; 1.2080; 64 HRC Cooling: dry air, 5 bar; ap = 0.09 mm; ae = 0.06 mm; n = 16.820 rpm; f = 0.1 mm / rot Source: South Korean tool manufacturer

Milling in SKD61 with solid carbide end mill D8:

Wear Vb [µm] after 27 m cutting length

Tool: solid carbide end mill; D8; cutting length = 27 m Workpiece material: SKD61; 54 HRC Cooling with emulsion: ap = 4 mm: ae = 0.03 mm; vc = 100 m / minSource: Chinese tool manufacturer

Calo 3 layers TiXCo3: TiN → AlTi(Si)N → TiSiN TiXCo4: TiN → AlCrTi(Si)N → TiSiN

Highlights:

- Thermal stability
- Optimized service temperature
- Low coating residual stress

Specifications Color red brown 42-44 Nano-hardness [GPa] Coefficient of friction 0.4 [μ] PoD (at RT, 50% humidity) Coating thickness [µm] 1-4 Max. service 1,100 temperature [°C] Coating temperature [°C] 450-500 411 PLUS ECO (Ti, Al, TiSi20) 1011 G4 (TiSi20, AlTi40, TiSi25, AlTi40)

Calo 3 layers

Optional TiN adhesion layer \rightarrow AITiN for reducing coating residual stress → AlTiN for high hardness + TiSiN nanocomposite top lave

Signature Coating nACo

Universal nanocomposite for milling and drilling C-steels

nACo is one of PLATIT's best-known coating brands. It has proven itself on the market for over 20 years. nACo is an AlTiSi-based nanocomposite coating and performs best in the field of milling and drilling C-steels. The use of nACo provides excellent adhesion and good performance even for more unusual applications such as milling with coated ceramic tools and CBN tools.

• Nanocomposite with Si content • High temperature stability

Specifications

Highlights:

- Good hardness
- · Reduces adhesion between cuttingedges and workpiece
- Versatile application possibilities

Characteristics in cutting:

opecifications	
Color	blue violet
Nano-hardness [GPa]	39-41
Coefficient of friction [μ] PoD (at RT, 50% humidity)	0.4
Coating thickness [µm]	1–4
Max. service temperature [°C]	1,200
Coating temperature [°C]	400-500
111 PLUS G3	(AlSi12, Ti)
411 PLUS ECO	(Ti, AlSi18, -)
411 PLUS TURBO	(Ti, AlSi18, -, AlTi33)
1011 G4	(TiSi20, AlTi40, TiSi25, AlTi40)

Signature Coating nACRo

Nanocomposite for non-ferrous materials

nACRo is PLATIT's nanocrystalline nanocomposite. Based on CrN adhesion layer, it has a AlTiCrN microcrystalline core layer for toughness and a AlCrSiN top layer which guarantees thermal stability and wear resistance. Also, nACRo can also be deposited on sharp cutting edges for machining wood, aluminum alloy with Si content > 12% and titanium alloys such as TiAl6V4. Furthermore, nACRo can be used for aluminum injection molding.

Milling in abrasive aluminum alloy:

Flank wear (µm)

Tool: solid carbide endmill; D8; z=3; cutting length = 25 mm Workpiece material: EN AC 4700= <3.2583> AlSi12Cu Coolant: emulsion vc = 250 mm/min; n = rpm; ap = 5 mm; ae= 1 mm; fz = 0.16 mm/z Source: GFE Schmalkalden

Milling in SUS316 with solid carbide end mill D4:

Wear Vb [µm] after 480 milling operations

Werkzeug: Vollhartmetall-Schaftfräser; D4; z = 4; Schnittlänge = 6 mm Werkstückmaterial: SUS316 Kühlmittel; ap = 0,1 mm; ae = 4 mm; vc = 100 m/min; n = 8000 U/min; fz = 0,0625 mm/z; f = 0,2500 mm/U; vf = 2000 mm/min

Quelle: Werkzeughersteller

AlTi(Si)N is deposited on a TiN adhesion layer

Highlights:

- High resistance against temperature changes, oxidation and abrasive wear
- Specialist for machining abrasive aluminum alloys
- Usage also in chipless forming

Specifications	
Color	grey
Nano-hardness [GPa]	39-41
Coefficient of friction [μ] PoD (at RT, 50% humidity)	0.5
Coating thickness [µm]	1-4
Max. service temperature [°C]	1,100
Coating temperature [°C]	450-500
111 PLUS G3	(AlSi12, Cr)
411 PLUS ECO	(-, AlSi18, Cr)
411 PLUS TURBO	(-, AlSi18, Cr, AlTi33)

CrN adhesion layer → AlTiCrN core layer → AlCrSiN top layer

Signature Coating Omnis

Universal high-performance AICrN-MB coating

Omnis is a universal high-quality coating developed for a wide range of applications for wet and dry machining:

- Optimized coating properties (hardness, modulus, morphology) with advanced plasma parameters
- Higher productivity and deposition rate through increased process performance
- Advanced BIAS strategy for optimized residual stress distribution
- Use of multi-alloyed targets for maximum productivity

Charakteristics in cutting:

With Omnis from PLATIT, variance between the tests is reduced:

Highlights:

- Universal applicability e.g., for roughing, skiving, hobbing, finishing, forming, micro tools
- Omnis also works in applications typically covered by AITiN and AICrSiN coatings
- Superior and predictable wear behavior
- Fast and economical with extremely short batch times, e. g., for 2.0 μm on endmill (3-fold rotation):
- 4h with Pi111 PLUS G3
- 4-5h with Pi411 PLUS ECO
- 6–7h with PL1011 G4
- or 4.0 µm on hob (2-fold rotation):
- 5-6h with Pi111 PLUS G3
- 5-7h with Pi411 PLUS ECO
- 7-8h with PL1011 G4

Average cycle times in an ongoing production with max. number of cathodes in use.

Specifications

1	
Color	grey/anthracite
Nano-hardness [GPa]	33–35
Coefficient of friction [µ] PoD (at RT, 50% humidity)	0.5
Coating thickness [µm]	0.3-6.0
Max. service temperature [°C]	1,100
Coating temperature [°C]	480
111 PLUS G3	(Al, Cr)
Pi411 PLUS ECO	(Al, AlCr30, Cr)
Pi411 PLUS ECO	(AlCr35, AlCr35, AlCr35)
1011 G4	(-, AlCr36, AlCr36, AlCr36)

Signature Coating BorAC

Specialist for highly demanding machining

BorAC consists of a boron-doped AlCrN protective coating, which is especially suitable for crack inhibition and thus for high-speed applications such as transmission and gear cutting tools. BorAC delivers top performance under high loads, especially in gear hobbing and roughing (dry and wet). The coating can be deposited with PLATIT Pi411 PLUS ECO or Pi411 PLUS LACS[®] - with simultaneous ARC and SPUTTER processes.

Effect of boron doping on crater wear in hobs:

Highlights:

- Low coating residual stress
- Crack-resistant
- Minimizes crater wear
- Increases hardness and toughness

Specifications	
Color	grey
Nano-hardness [GPa]	38-40
Coefficient of friction [μ] PoD (at RT, 50% humidity)	0.5
Coating thickness [µm]	1–5
Max. service temperature [°C]	900
Coating temperature [°C]	400-500
411 PLUS ECO	(Al, AlCrB20-10, Cr)
411 PLUS ECO	(AlCr35, AlCrB20-10, AlCr35)
1011 G4	(-, AlCr36, AlCrB20-10, AlCr36)

CrN adhesion layer → AlCrN → AlCrBN

Signature Coating TiBor

LACS[®] coating for aluminum & titanium alloy machining

TiBor is one of the most efficient PLATIT LACS® coatings. The patented hybrid process of LARC[®] and central SPUTTERING SCIL® achieves a droplet-free surface which avoids built-up edges. Thus, the cutting edge will be sharp. TiBor performs very well in milling, drilling and reaming of aluminum, titanium and other non-ferrous metals like copper or brass.

Highlights:

- Use for applications which favor build-up edge like Ti6Al4V (grade 5 / TC4) or aluminum
- Highly accurate coating for precise machining
- Increased wear-resistance

Signature Coating ta-C

Solution for graphite machining and for non-ferrous metals

ta-C belongs to the PLATIT DLC3 hydrogen-free coating generation with over 50% sp3 content. The high sp3 bond fraction results in a higher density, hardness (at ambient and elevated temperature), thermal stability, oxidation resistance, residual stress and lower thermal conductivity.

Superalloys

Specifications

Color	satin silver
Nano-hardness [GPa]	45
Coefficient of friction [µ] PoD (at RT, 50% humidity)	0.4
Coating thickness [µm]	1–5
Max. service temperature [°C]	600
Coating temperature [°C]	200-400
411 PLUS LACS®	(Ti, -, -, TiB2 SCIL)

Superalloys

Machining AI alloys with Si content to 10-14%: ta-C with Pi411 PLUS LACS® features higher performance and the least torque value measured

Rough milling in Ti6Al4V (TC4):

Wear Vb [µm] after 10 h

Tool: end mill Workpiece material: Ti6Al4V (TC4) Spindle speed: 6500 rpm Cutting speed vc: 1800 mm / min ap= 0.2 mm; ae=3.6 mm Source: Chinese tool manufacturer

Highlights:

- Over 50% sp3 content
- High density and hardness
- Thermal stability
- Oxidation resistance
- Low chemical affinity
- Low thermal conductivity
- Low roughness
- Stable process and low maintenance intervals

Specifications

Color	From rainbow colors to anthracite
Nano-hardness [GPa]	35-55
Coefficient of friction [μ] PoD (at RT, 50% humidity)	0.1
Coating thickness [µm]	0.3–1
Max. service temperature [°C]	450
Coating temperature [°C]	< 100
411 PLUS LACS®	(-, -, Cr, C SCIL)

Tool: aluminum step drill; GIW/PCG

DLC3 coated end mill under scanning electron microscope:

Signature Coating nACoX

Oxide nitride coating special for inserts

nACoX is the specialist for turning and milling with inserts under dry or MQL (Minimum Quantiy Lubrication) conditions. Based on his four layers and thickness range, nACoX is comparable to CVD coatings while using lower coating temperature. By adding oxygen into the coating, nACoX has an improved oxidization resistance. It has a wide range of usage, beginning from milling cold work steel and ending with turning of Inconel 718.

Charakteristics in cutting:

Superalloys

Highlights:

- Wear protection with chemical and thermal isolation, avoiding oxygen diffusion
- Decreasing friction at temperatures over 1,000 °C for reduction of build-up edges
- Sustainability by lower coating temperature than comparable CVD coatings

Specifications	
Color	dark grey
Nano-hardness [GPa]	30-32
Coefficient of friction [µ] PoD (at RT, 50% humidity)	0.5
Coating thickness [µm]	4-10
Max. service temperature [°C]	1,200
Coating temperature [°C]	550-600
411 PLUS TURBO & OXI	(Ti, AlSi18, AlCr45, AlTi33)

Signature Coating TapCT

SCIL[®] coating for tap forming

TapCT is characterised by a very smooth surface thanks to the SPUTTER process SCIL® (SPUTTERED Coating Induced by Lateral Glow Discharge). Thus, during tap forming, the friction between the tool and the workpiece material and the sticking of the material will be reduced, and the process reliability increased. Furthermore, the excellent coating adhesion will increase the performance.

Tap forming in a carbon steel:

Tool: HSS forming tap M6x1 Workpiece material: carbon steel Coolant: emulsion vc = 20 mm/min; depth of the hole 9.0mm Source: Asia tool manufacturer

Turning of ductile nickel alloyed steel:

Tool: Turning insert WNMG 080412 Workpiece material: Ni-steel Coolant: MQL vc = 110mm/min; f = 0.4mm; ap = 0.2 mm Source: German automotive manufacturer

Calo 4 layers TiN adhesion layer → AITiN core layer → nACo core layer → AICrON top layer

0

Highlights:

- High process reliability
- Lower machining torque
- High quality of the formed tap

Specifications	
Color	silver
Nano-hardness [GPa]	28-30
Coefficient of friction [μ] PoD (at RT, 50% humidity)	0.4
Coating thickness [µm]	1–5
Max. service temperature [°C]	700
Coating temperature [°C]	400-450
411 PLUS SCIL	(LGD, -, -, CrTi50 SCIL)

Coatings

Dedicated Coating example FeinAl Plus

The next generation of the dedicated coating for fineblanking applications

Longer tool life and higher tool efficiency: partner companies Blösch, Feintool and PLATIT release FeinAl Plus, a new generation of dedicated PVD coatings for fineblanking.

FeinAl set the market standard for PVD coatings of fineblanking tools over many years through its dedicated coating design and seamless integration in a process chain of customized pre- and posttreatment steps. Based on the proven concept of FeinAl and by adding several years of continuous development, the project partners announce the next level of coatings for fineblanking applications: **FeinAl Plus**

Numerous innovations lead to the unmatched tool performance of FeinAl Plus:

- Dedicated AlCr multilayer creating a tough and flexible coating structure
- Selective doping with boron, simultaneously reducing internal stress and increasing hardness
- Improved crack resistance and thus less chip welding inside the cracks
- Specialized edge rounding processes and post-polishing steps tailored to the substrate material, tool geometry, and coating design

Average wear comparison [µm]:

Average measured wear on tools from four different test series after up to 30,000 strokes

Tool: Internal forming punch; high-speed steel S390; hardness of 66 HRC Coating thickness: 3.5 μm

Punching material: quality C60E; thickness 3 mm; tensile strength 560 MPa Source: Feintool Technology AG

BLOSCH

Blösch specializes in the processing and finishing of surfaces.

ငှာ FEINTOOL

Feintool is the leading manufacturer and expert in fineblanking.

PLATIT manufactures high-tech PVD and PECVD coating units for tools and components.

Specifications

Color	grey
Nano-hardness [GPa]	38-40
Coefficient of friction [μ] PoD (at RT, 50% humidity)	0.3
Coating thickness [µm]	2.0-4.0
Max. service temperature [°C]	900
Coating temperature [°C]	400-500
Pi411 PLUS ECO	(Al, AlCrB20-10, Cr)
411 PLUS LACS®	(-, Al, Cr, TiB2 SCIL)

CUSTOM COATING SOLUTIONS

CCS – Custom Coating Solutions

PLATIT's Custom Coating Solutions meet any special requirements. They are user-defined in every respect:

Engineers and technicians from PLATIT in the CCS (Custom Coating Solutions) division in Switzerland advise customers and design, develop, manufacture and program systems according to the individual requirements. They develop solutions in close exchange with customers and accompany them over the years by providing support and supplying spare parts.

For this purpose, PLATIT has established a network of companies for cooperation in the production of components. PLATIT also manufactures special holders as well as handling devices and works together with various partners to offer peripheral equipment adapted to the Custom Coating Solutions.

For inspiration, the following pages show different sample applications for which PLATIT has already developed, manufactured and delivered coating systems.

Custom Coating Solutions

CCS for technological lead

Coating centers and manufacturers in various applications need to be flexible in coating high volume of small and large substrates together – from high-performance cutting tools to components and forming tools. This allows them to save time and costs per batch – without compromising coating performance. PLATIT continuously adapts coating systems and their technologies to the current and future requirements. The PVD coating units that can produce such high-performance coatings are among the best in the world and are used by very successful high-tech manufacturing companies, regrinders as well as coating centers around the world.

Sample Custom Coating Solution_Pi1511

The Pi1511 is a high-volume PVD coating unit. It combines three rotating PLATIT LARC® XL cathodes positioned inside the door with two Planar ARC cathodes in the back of the chamber. The combination of round cathodes with high-performing Planar cathodes allows for the deposition of PLATIT Signature Coatings with familiar flexibility. The LARC® XL cathodes have a very long lifespan and thus guarantee high productivity at a low cost per tool. Customers with a strong focus on innovation and technology use the mix of planar and round cathodes in the Pi1511 to generate an exceptional performance advantage with the unique cathode configuration.

Highlights:

- Uniquely flexible cathode composition with three rotating and two planar ARC cathodes for exclusive performance benefits
- Fast cathode exchange and long lifetime of the LARC[®] XL cathodes (LAteral Rotating XL Cathode)
- MAC-3C (Magnetic ARC Confinement Coil Current Compensation) for automated magnetic field adjustment to increase the lifetime of a target
- Possibility to develop in-house coatings
- User-friendly and intuitive software that meets the latest standards
- Focused on specific applications in Industry 4.0

Specifications_Sample Custom Coating Solution Pi1511

Technologies applied:

- 3 × LARC[®] XL (LAteral Rotating XL Cathode) inside the door and 2 × Planar cathode with ARC technology in the back
- MAC-3C (Magnetic ARC Confinement Coil Current Compensation) for automated magnetic field adjustment
- Quick cathode exchange
- Deposition of PLATIT Signature Coatings

Etching technologies applied:

- LGD[®] (Lateral Glow Discharge)
- Plasma etching with argon, glow discharge
- Metal ion etching (Ti, Cr)

Load and cycle times:

- Max. coating volume: ø 715 × H 805 [mm]
- Max. coating height with defined coating thickness: 711 mm
- Max. load: 750 kg; higher weight upon request

Software:

- Simple use and maintenance
- PLATIT SmartSoftware (PC and PLC system)
- Modern control system with touch screen
- Statistics and help function via user interface
- Data recording and real-time display of process parameters and flow
- Manual and automatic process control
- Remote diagnostics and maintenance

Machine dimensions:

• Footprint: W 5,000 × D 2,200 × H 2,500 [mm]

CCS for Saw Bands

The biggest challenge in the handling as well as coating of saw bands is their size as they are wound on a tool carrier, the coil. Due to circumferential speed, layer growth can result in varying coating thickness.

PLATIT has mastered this problem by developing and manufacturing a Custom Coating Solution:

- To improve the handling, the coating chamber door opens sideways; the opened chamber door can be swiveled by 90° so the loading and unloading can take place from the left-hand side
- The coil is arranged at a certain angle to the deposition technology to ensure a constant coating

thickness distribution

- The LGD[®] (Lateral Glow Discharge) process is used for etching and improved coating adhesion
- To guarantee a uniform coating, the teeth and the back of the saw band are coated by different cathode types
- The coating process takes place at a maximum temperature of 500 °C to ensure that the physical and chemical properties of the saw band remain unchanged
- Coating increases the lifespan of saw bands and improves the cutting performance during sawing; the development of tool wear is reduced

Specifications_Sample Custom Coating Solution Pi603

Technologies applied:

- 3 × LARC[®] cathode by PLATIT with ARC technology
- 1 × Planar ARC cathode for uniform coating of the backs of saw bands

Etching technologies applied:

- LGD[®]
- Plasma etching with argon, glow discharge
- Metal ion etching (Ti, Cr)

Load and cycle times:

- 2 batches/day with a batch time of 7.5-9h
- Saw band diameter up to 1,360 mm
- Inner packing diameter: 560 mm
- Saw band height up to 100 mm
- · Saw band weight incl. carrier up to 600 kg

Sample Custom Coating Solution_Pi603

In order to meet the product-specific requirements, PLATIT has designed a turnkey system with a PVD coating unit operating at a high vacuum as well as a tailor-made single-chamber cleaning system. The saw bands are wound as a coil and are both cleaned and coated with the same product carrier to avoid additional effort. The Pi603 was built in 2006 and is still working perfectly today. PLATIT's design proved to be very userfriendly. Even customers who are not experienced with such technologies can operate this unit with ease. Pursuant to the open-source principle, PLATIT has transferred its knowledge to the customers so that they can benefit from the advantages of LARC[®] cathodes and flexibly combine as well as develop their own coatings.

Software:

- Simple use and maintenance
- PLATIT SmartSoftware (PC and PLC system)
- Modern control system with touch screen
- Data recording and real-time display of process parameters and flow
- Manual and automatic process control
- Remote diagnostics and maintenance

Machine dimensions:

• Footprint: W 5,900 × D 6,450 × H 3,100 [mm]

CCS for Saw Blades

When it comes to coating saw blades, the biggest challenge is to find a coating unit that can efficiently coat large quantities in a single batch at a high level of quality without damaging the saw blades. Due to their high content of heat-sensitive steel, accurately controlling the process temperature is essential. If the process temperature is too high, the saw blade deforms and thus loses its cutting force.

PLATIT designs special coating units to meet these challenges:

- The PVD unit has a temperature control system for coating saw blades; the temperature is kept within a very narrow range
- The use of ARC power supplies on alloyed targets improves the deposition rate and coating distribution, ensures uniform erosion and extends the target material's lifespan
- Pulsed cathodes and improved ARC distribution produce smoother coatings
- The coating chamber is suitable for large tools and substrates
- The modular carousel design provides maximum loading flexibility

A rail system ensures that the carousel trolley is always correctly aligned with the chamber, thereby making the loading and unloading of loads of up to 1800 kg easy. The height of the custom-designed carousel trolley can be adjusted at the touch of a button.

Sample Custom Coating Solution_PL2011

For the coating of large saw blades up to a ø of 1,423 mm (56"), PLATIT has built a high-capacity coating unit. A custom-designed carousel with 6 configurations allows for maximum loading flexibility while maintaining the quality of the coating. Tools with a small or large diameter or mixed loads can be coated in one batch.

The unit is equipped with two doors to provide:

- Optimal access to the chamber
- Simplified maintenance of both the machine and the cathodes
- Simplified batch management since a completed batch can be removed through one door and the next batch loaded immediately via the other door

Specifications_Sample Custom Coating Solution PL2011

Technologies applied:

 6 × Planar ARC cathode, 4 of which pulsed with ARC power supplies

Etching technologies applied:

- LGD[®] (Lateral Glow Discharge) with 2 cathodes with a shutter and 2 cathodes acting as anodes
- Plasma etching with argon, glow discharge
- Metal ion etching (Ti, Cr)

Load and cycle times:

- Coating volume up to ø 1,400 × H 700 [mm]
- Load up to 1,800 kg

Software:

- Simple use and maintenance
- PLATIT SmartSoftware (PC and PLC system)
- Modern control system with touch screen
- Data recording and real-time display of process parameters and flow
- Manual and automatic process control
- Remote diagnostics and maintenance

2-5 batches / day for*:

Saw blade (2.5 µm), 1fold rot.	Max ø 1,400 [mm]/55 inch	20 pcs.	8h	
Saw blade (2.5 µm), 2fold rot.	Max ø 460 [mm]/18 inch	150 pcs.	8h	
Saw blade (2.5 µm), 2fold rot.	Max ø 650 [mm]/25.5 inch	75 pcs.	8h	
Saw blade (2.5 µm), 2fold rot.	Max ø 350 [mm]/13.7 inch	200 pcs.	8h	
Saw blade (2.5 µm), 2fold rot.	Max ø 250 [mm]/9.8 inch	250 pcs.	8h	
Saw blade 1.6 mm / 0.06 inch (5 μm), 1fold rot.	5×Coil: ø 400−ø 680 [mm] ø 15.7−ø26.7 inch	320 pcs.	8h	
Shank tools (2μm), 4fold rot.	ø 8 x 70 [mm] ø 0.31 x 2.7 inch	3,888 pcs.	≈ 11 h	
Inserts (3 µm), 4fold rot.	ø 12 x 4 [mm] ø 0.47 x 0.15 inch	45,360 pcs.	≈ 13 h	

*Average cycle times in an ongoing production with max. number of cathodes in use.

Machine dimensions:

• Footprint: W 8,000 × D 5,800 × H 2,350 [mm]

CCS for Rollers

Because of their weight, large sizes and special geometry, rollers are difficult to handle and not suitable for coating in standard coating units. The coated surface must be defect free and prevent the workpiece material sticking on the tool.

PLATIT develops Custom Coating Solutions tailored to special applications:

- The unit is set to lower system temperatures for heat-sensitive tools and machine components made of high-speed steel
- The vacuum system is further developed for steady coating thickness distribution for large chamber volumes
- Smoothest surface and micro-hardness uniformity of the coating is enabled by pulsed DC coating technology
- The design and handling concept can be flexibly adapted to the weight and size of the tools, ensuring easy operation and maximum user comfort; target change is uncomplicated

Sample Custom Coating Solution_Mega-PiMS

PLATIT has designed a Custom Coating Solution with simplified loading in which the rollers are positioned horizontally. The cathode is located at the bottom of

the coating chamber. PLATIT's SPUTTER technology is used to guarantee smooth coatings for high-glosspolished or textured surfaces.

Specifications_Sample Custom Coating Solution Mega-PiMS

Technologies applied:

- 1 × SPUTTER cathode
- 1 × anode on the opposite side

Etching technologies applied:

- LGD[®] (Lateral Glow Discharge)
- Plasma etching with argon, glow discharge

Load:

- Coating volume up to ø 600 × L 3,000 [mm]
- Coating volume with defined coating thickness up to Ø 600 × L 2,000 [mm]
- Load up to 1,000 kg; higher weight upon request

Software:

- Simple use and maintenance
- PLATIT SmartSoftware (PC and PLC system)
- Modern control system with touch screen
- Statistics and help function via user interface
- Data recording and real-time display of process parameters and flow
- Manual and automatic process control
- Remote diagnostics and maintenance

Machine dimensions:

 Footprint (coating unit with electrical cabinet): W 4,100 × D 2,900 × H 2,700 + W 1,900 × D 1,100 × H 2,200 [mm]

CCS for Coin Minting Dies

Custom Coating Solution for Coin Minting Dies

When coating stamps, punches and coin minting dies, ensuring surface quality is essential. These surfaces require smooth, dustless coatings with excellent adhesion to accurately replicate highly detailed relief structures. The requirements increase when minting dies are used to produce proof coins, where temperature-sensitive materials are often used. They have narrow tolerances and can only be coated within a certain temperature range.

For coin minting dies, PLATIT has developed a Custom Coating Solution for high-quality coatings with a strong amorphous structure as well as high density, surface quality and reproduction accuracy.

Highlights:

- Built for the highest demands towards the surface of proof coins
- Full temperature control for temperature sensitive substrates
- Specific holders developed for various stamp sizes and geometries or customized upon request
- Guaranteed smooth dust-free coatings, since the surface to be coated faces downwards; the target is placed on the bottom of the coating chamber
- SPUTTER technology from PLATIT, supported by LGD[®] (Lateral Glow Discharge) ensures very good adhesion; thus, there are no droplets and no layer defects

Specifications_Sample Custom Coating Solution S-MPuls

Technologies applied:

- 1 × DC-pulsed magnetron SPUTTER cathode with a rotating magnetic field
- SPUTTER source arranged at the bottom of the chamber

Etching technologies applied:

- LGD[®]
- Plasma etching with argon, glow discharge, with auxiliary anode

Load and cycle times:

- Batch time of 3-4.5 h
- Coating diameter with defined coating thickness: ø 70–250 [mm]
- Substrate holder: ø 300 mm, varying customer-specific versions possible
- Load up to 20 kg

Software:

- Simple use and maintenance
- PLATIT SmartSoftware (PC and PLC system)
- Modern control system with touch screen
- Statistics and help function via user interface
- Data recording and real-time display of process parameters and flow
- Manual and automatic process control
- Remote diagnostics and maintenance

Machine dimensions:

 Footprint (coating unit with electrical cabinet): W 945 × D 1,403 × H 2,068 + W 608 × D 1,369 × H 2,068 [mm]

Targets

Solution

Service

Ceramicoin

Dedicated PVD coating for coin minting dies

Ceramicoin, deposited with S-MPuls, replicates every detail of the surface and is thus a significant advantage for coin appearance and design features.

Quality features of Ceramicoin:

- Surface quality
- Durability
- Smoothness
- Coating adhesion
- Replication of every detail
- Extended die life

Advantages of PVD technology

compared to Cr-plating:

- No hexavalent chromium
- No noise
- No chemicals
- No contamination
- No fumes
- No toxic waste
- No risk for your health

Grinding image

Thickness total: 1.05 µm

Adhesion class: HF 1

Highlights:

- Coin minting dies ready to use
- No post-polishing needed
- No post-cleaning needed
- Fast cycle times: < 4 h
- Pumping, heating: ~ 60 min
- Etching: ~ 35 min
- Coating: ~ 40 min
- Cooling, venting: 30 60 min

carbides)

geneities (pores or

Residues from Residues from engraving (oxides) polishing

Specifications

Color	satin silver
Nano-hardness [GPa]	32
Coefficient of friction [µ] PoD (at RT, 50% humidity)	0.4
Coating thickness [µm]	1
Max. service temperature [°C]	600
Coating temperature [°C]	200

View inside the coating chamber with up to 40 coin minting dies per batch:

COMPENDIUM 64 86

The TKS concept

PLATIT's turnkey system with complete solutions for upstream and downstream steps for hard coating is ideally suited for seamless integration into the tool manufacturing and regrinding process. As a partner for its customers, PLATIT takes responsibility for the functionality of the whole system.

PLATIT provides and integrates everything needed for a successful coating center:

- Depending on the requirements, different dimensions of coating chambers for the coating of small to oversized substrates
- Comprehensive coating know-how
- Equipment for decoating high-speed steel and carbide
- Equipment for edge pre-treatment
- Vacuum-assisted single-chamber cleaning units
- Systems for easy guality control of the coating
- Equipment for post-treatment, such as polishing
- PVD production accessories from sleeves to handling systems and chillers

PLATIT cooperates with partner companies to offer a wide range of peripheral equipment for upstream and downstream steps of the coating process. Flexibly tailored to the various applications, PLATIT's

Typical workflow in a coating center with PLATIT's turnkey solutions:

- 1. Receipt of goods 2. Preliminary cleaning
- 3. Optional: decoating
- 4. Optional: edge pre-treatment
- 5. Fine-cleaning
- 6. Preparation for coating
- 7. Coating 8. Unloading of a batch 9. Optional: post-treatment 10. Quality control 11. Goods output

COMPENDIUM 64 88

processes are integrated into its customers' tool manufacturing and thus guarantee an independent, stable and innovative production process.

Some modules (decoating, pre- and post-treatment) should be set up in a separate room from the coating units. Chiller must be placed separately.

Decoating

Decoating/stripping is an important prerequisite for recoating at a high level of quality. The old, used coating is removed so that the new one will adhere

well to the reground tool and achieve a high degree of performance. Regrinding without decoating leads to a reduction of the tool's lifespan.

Conventional process

In coating centers, tools are usually decoated after regrinding. However, decoating after regrinding can damage the final geometry of the tool and increase the risk of poor adhesion. In addition, packaging, transport and repackaging involve the risk of damaging the tool.

Integrated process

By integrating the decoating process into the tool regrinding, decoating can take place before the regrinding.

Advantages:

- Elimination of transport and packaging
- Less damage caused by handling
- Chemical destruction after regrinding is prevented
- Edge pre-treatment is fully effective
- Adhesion is optimized
- The tool performs almost as well as a new one

In decoating carbide, the biggest challenge is to avoid damaging the substrates. The most common damage is caused by cobalt leaching.

Cobalt leaching refers to the removal of the cobalt binder from the top layer of the carbide. The most common reasons are:

- Chemical decoating
- Aqueous cleaning
- Water-cooled grinding
- Grinding too fast with a blunt grinding wheel

PLATIT_Decoating unit concepts

PLATIT offers two types of decoating units – for carbide and high-speed steel – which can be customized according to the customer's requirements.

The coating of cobalt-leached carbide is not effective. Although the coating will adhere well to the top tungsten carbide layer, the tungsten carbide, along with the coating, will not adhere to the base material due to the lack of cobalt binder.

Decoating

PLATIT CT20 (patented)_Ultra-fast decoating unit

CT decoating systems from PLATIT set new standards in decoating, especially for carbide tools. The problem of cobalt leaching is circumvented by protecting the substrate with a TiN adhesion layer as the decoating process of the CT systems will not attack the TiN layer. For the CT20, the decoating cycle all the way to the TiN adhesion layer will take less than three minutes.

The end of the process is automatically detected by built-in electronics. The adhesion layer is not removed and therefore "overcoated" after regrinding and pretreatment. A service life comparable to that of a new tool is achieved.

	Pi111	Pi411	PL711	PL1011	\odot
TiN	Ν	Ν	Ν	Ν	
TiCN	Ν	Ν		Ν	
TiAIN	Y	Y		Y	3 min*
TiAICN		Y		Y	3 min*
Altin	Y	Y		OPT	3 min*
CrN	OPT	OPT	Ν	OPT	2 min*
CrTiN	Y	Y		Y	3 min*
ТарСТ		Y			3 min*
ZrN	Y	Y		Y	2 min*
AlCrN		OPT			2 min*
Omnis		Ν		Ν	2 min*
AlTiCrN	Y	Y		Ν	3 min*
nACo	Y	Y		Ν	3 min*
nACRo	Ν	OPT			3 min*
TiXCo3	Ν	Y		Ν	3 min*
TiXCo4		Y			3 min*
PSiX		Ν		Ν	3 min*
BorAC		OPT			2 min*
TiBor		Ν			

Features:

- The new environmentally friendly wet chemical carbide decoating unit from PLATIT
- Fastest decoating process worldwide
- Decoating time is less than 3 minutes all the way to the TiN adhesion layer and the decoating cycle stops automatically at the TiN adhesion layer
- A single recipe for a wide variety of nitride coatings with a TiN adhesion layer, independent of tool size
- Multiple coatings can be removed as well

- Special holders for shank tools, hobs, inserts etc. to avoid attacking uncoated areas
- Max. tool dimensions: ø 200 × 250 mm
- Common chemicals available worldwide
- The process takes place at room temperature, neither heating nor cooling is required
- The end of the process will be automatically detected, which greatly simplifies the operator's work

2x reground 3x reground + recoated + recoated Decoated with CT20, Decoated with CT20, reground and recoated reground and recoated

Roughness and tool life remain constant, if the tool gets decoated with PLATIT CT20 before regrinding

Decoating

Edge pre-treatment

PLATIT ST40_Conventional decoating units

ST decoating units from PLATIT stand for great safety and flexibility.

Depending on the module, they decoat Ti- or Cr-based coatings on carbide or high-speed steel.

ST40_Carbide shank tools:

Coating	۸1	R	C
HIN	4-5h	I-HIVI	нм
TICN	6-8h	T-HM	HM
TiAIN	10–18 h	T-HM	HM
TiAICN	-	-	-
AITIN	10-18h	T-HM	HM
CrN	0.5-3h	С	CR
CrTiN	-	-	-
ТарСТ	-	-	-
ZrN	-	-	-
AlCrN	0.5-2h	С	CR
Omnis	1–2h	T-HM	HM
AlTiCrN	-	-	-
nACo	9–11h	T-HM	HM
nACRo	0.5-2h	С	CR
TiXCo3	5-9h	T-HM	НМ
TiXCo4	-	-	-
PSiX	10-18h	T-HM	HM
BorAC	-	-	-
TiBor	1–2h	T-HM	НМ
A1 Decoatin 2 µm, ø 2	g time for 10 mm		ecoating time for µm, ø 80 x 180 m

ST40	_High-spe	eed steel	hobs:
------	-----------	-----------	-------

Coating	A2	В	С
TiN	~1h	T-HSS	HSS
TiCN	~2h	T-HSS	HSS
TiAIN	1–2h	T-HSS	HSS
TiAICN	-	-	-
AITIN	1-2h	T-HSS	HSS
CrN	0.5-3h	С	CR
CrTiN	-	-	-
ТарСТ	-	-	-
ZrN	-	-	-
AlCrN	0.5-2h	С	CR
Omnis	1-2h	T-HSS	HSS
AlTiCrN	-	-	-
nACo	0.5-2h	T-HSS	HSS
nACRo	0.5-2h	С	CR
TiXCo3	1-3h	T-HSS	HSS
TiXCo4	-	-	-
PSiX	1-2h	T-HSS	HSS
BorAC	-	-	-
TiBor	1–2h	T-HS	HSS

C Module

* Different decoating chemicals available through the worldwide distribution network of Borer AG, Zuchwil, Switzerland - = cannot be decoated in conventional decoating units

B Decoating recipe*

The edge pre-treatment is a very important process in a turnkey system designed to utilize the full potential of a coating.

Advantages of cutting-edge rounding:

- Reduces chipping
- Reduces what is referred to as an "antenna effect" in PVD coatings on sharp edges and thus reduces the stress in the coating
- The more an edge is rounded, the thicker the coatings can be

The main aim of edge pre-treatment is to increase the edge's stability and thus the tool's performance.

- Higher cutting-edge stability
- Avoids cutting-edge breakouts and flaking of the coating during the machining process
- Increase of the tool's lifespan despite a "blunt" cutting-edge

Edge pre-treatment

Influence of cutting-edge rounding when milling high-alloy steel

Tool: end mill, D10, z = 4

ap = 1.5 × d . ae = 0.25 × d

vc = 150 m/minfz = 0.05 mm/z

Source: GFE, Germany Coating: nACRo

Influence of cutting-edge rounding when drilling

Methods of edge pre-treatment

Different materials and tools require different methods of edge pre-treatment. Below is an overview of the most common ones:

Method		Dry blasting	Wet blasting	Stream finishing	Brushing	Magnet finishing
Tool type	Drills	+	++	++	+++	+++
	End mills	+	++	+++	+++	+++
	Inserts	++	+++	+	++	+
	Hobs	++	+++	+	+	-
	Punches	+	+++	+++	-	-
	Molds and dies	+++	+++	-	-	-
Characteris- tics	Stability	+++	+++	+++	+++	+++
	Flexibility	+++	+++	++	++	++
	Productivity	+	+++	++	++	++
	Groove polish- ing possible	Limited	Yes	Yes	Yes	Limited
	Automation solutions possible	Yes	Yes	Yes	Yes	Yes
	Special characteristics	Blasting media sticks to the surface	Universally usable	Smooth surface	Individual treatment for cutting- edges and surfaces possible	Especially for micro tools
+++ High quality an ++ High quality or + Low quality and - Not suitable fo	d high efficiency high efficiency d / or low efficiency r the system					

X155CrVMo12-1; HRC22 Cooling: dry air ap = 15 mm vc = 75 m/minfz = 0.15 mm/z Coating: nACo

Tool: blind holes; VHM drill; D5

Edge pre-treatment

Comparison of wet and dry blasting

Comparison	Vet Dry		
Surface roughness	Sa = 0.05μm; Sz = 0.32μm Slightly shiny surface	Sa = 0.11 µm; Sz = 1.14 µm	
Residual material after blasting	Risk of cobalt leaching due to the Smearing of the residual materia water		
Coating adhesion	HF1	HF1-HF3	
Edge rounding	Good to control	Difficult to control	
Grain size	Mesh 320 (50 μm), coarse, for edge rounding Mesh 400 (37 μm), medium, for surface activation Mesh 500 (30 μm), fine, for polishing		
Typical micro-blasting time [min] for hobs ø 80 mm; R = 10 μm	3	6	
Advantages and disadvantages	Pre-cleaning not necessary	Pre-cleaning necessary	
	Drying needed after blasting	No need for drying after blasting	
	Difficult to clean after interruption	Easy handling even after interruption	
	Fewer abrasive inclusions in the tool surface	More abrasive inclusions in the tool surface	
	Low surface roughness at the same edge rounding	High surface roughness at the same edge rounding	

Cutting-edge rounding and surface quality

Depending on the required edge rounding, different media are applied.

- Al2O3 with SiC — SiC Silicon carbide ----- Walnut granulate with SiC

Cleaning

A clean metallic surface is necessary for coating. Contamination such as grinding residue, oil or dust weaken the coating's adhesion.

The industrial single-chamber cleaning units from PLATIT are the result of a partnership with Eurocold:

- Chamber sizes adapted to coating units by PLATIT
- Fully automatic cleaning process including vacuum drying
- Intuitive touch screen with real-time process parameters
- Remote diagnosis and maintenance
- Independent of environmental conditions as the system is closed

- Number of cleaning baths
- Bath filtration
- Immersion rinsing
- Tool sizes

Cleaning unit	V111	V411
Chamber volume [mm]	W 350 × D 390 × H 480	W 500 × D 500 × H 500
Loading for shank tools ø 10 × 70 [mm]	504 pcs.	1,008 pcs.
Max. load [kg]	150	200
Cycle times [min]	Approx. 45	Approx. 45

Cleaning cycle

Advantages of a single-chamber cleaning unit compared to a cleaning line

	Single-chamber cleaning unit	Cleaning line	
Footprint	Compact	Very big (long)	
Sensitive to environment	No	Yes (lower with housing)	
Evaporation	No	Yes	
Ventilation necessary	No	Yes	
Controlled atmosphere	Yes	Limited	
Throughput (with the same bath size)	Low	High	
Detergent selection	Limited	Full flexibility	
Detergent carry-over	No	Yes	
Oscillation	No	Yes	
Heavy tools	Easy handling	Depends on crane	
Investment	Medium	High	
Energy consumption	Medium	High	

Quality control

Thickness and adhesion are important characteristics of a coating. They need to be controlled and monitored to guarantee a constant level of performance.

PQCS_PLATIT Quality Control Software

PQCS is a quality control software developed by PLATIT. The software is optimized for easy and fast data acquisition by recording batch photos, coating thickness and adhesion. All data is stored in a database to generate a coating report and provide a graphical representation of quality trends.

Methods for quality control

The basic quality control methods of a PVD coating are:

- Coating thickness measurement using a calo tester on test plates and tools
- Adhesion evaluation using a Rockwell or scratch tester

- Advantages:
- Simple user interface
- Generating a coating report step by step to record the coating quality
- Automatic database entries including customer information, batch information and a photo, calo and Rockwell image, as well as adhesion report with scratch tester
- User-defined fields can be integrated
- The data can be filtered and represented graphically to recognize quality trends

Products and integration services available from PLATIT.

Post-treatment

Objectives of post-treatment

- Removal of droplets after coating
- Reduction of surface roughness
- Improved chip flow for cutting tools

Overview of the most common post-treatment methods

Method		Wet blasting	Stream finishing	Polishing	
Tool type	Drills	+++	++	+++	-
	End mills	+++	+++	+++	
	Inserts	+++	+	+	
	Hobs	+++	+	-	
	Punches	+++	+++	+++	
	Molds and dies	+++	+	+++	
Characteristics	Stability	+++	+++	-	-
	Flexibility	++	+	+++	gh quality and high efficiency gh quality or high efficiency w quality and/or low efficiency it suitable for the system
	Productivity	+++	++	+	
	Groove polishing possible	+	++	+++	
	Droplet removal possible	+	++	+++	
	Automation solutions possible	Yes	Yes	No	
	Special characteristics	Universally usable	Smooth surface	Very smooth surface	N Co Hi + + + + + + + + + + + + + + + + + + +

If the post-treatment is too intense, the edge will become exposed. This will lead to:

- · Immediate full and direct contact of the cuttingedge with the workpiece material
- Low thermal and chemical insulation
- Low coating thickness near the cutting-edge

Punch coated

One of the problems that can arise without posttreatment of the surfaces is the jamming of the chips, which can cause a tool such as a drill to break.

- A larger cutting-edge radius, which results in a larger surface area without coating
- The impression of a defective coating

Punch polished

LIFECYCLE MANAGEMENT

PLATIT® 22-Series

Service throughout the entire life cycle of your unit

At PLATIT, you enjoy service that leaves no questions unanswered. Whether you need spare parts or new cathodes, advice or upgrades: Our experts will make sure that your coating unit operates optimally at all times, ensuring that you achieve the best possible coating performance.

Spare parts for your PVD unit

Unwanted downtime of your unit must be avoided, as it costs your company money and customer loyalty. For this reason, we place the utmost importance on the smooth supply of important spare parts.

Our central warehouses in the Czech Republic, Switzerland, the United States and China guarantee fast delivery times and short distances for the supply of a wide range of spare parts. The service teams at these locations can be reached via the hotline and always provide top-level support. As our customer, you get access to our online service database, in which your PVD unit is already entered. Here, in addition to your technical advisor, you will also find detailed information on spare parts for your coating unit, exploded drawings as well as the service history and condition of your machine in order to facilitate targeted problem solving.

The Premium Plus package

One example is our Premium Plus package, which aims to increase OEE (Overall Equipment Efficiency). Over the term of the contract, the package includes:

- 24 months warranty
- 4 service technician visits incl. spare parts:
 6, 12, 18 und 24 months after commissioning
- Complete support via hotline and internet
- All working hours and travel expenses of the service technicians.

Support solutions for rapid assistance with problems

Our mission is to support you in everything that concerns your PLATIT PVD coating unit. From the first questions asked shortly after installation to advice years later.

Training programs will help you and your staff take full advantage of the capabilities of your new PVD unit right from the start.

Our online service database is available 24/7 to provide quick and practical answers to frequently asked questions. In this way, many minor everyday hurdles can be quickly eliminated.

Through our hotline, our service technicians provide full support for more complex issues or difficult problems related to your unit. This extends to remote diagnostics, where our experts go through the process with you step by step to identify the source of the fault.

Of course, we will regularly be at your facility for maintenance if you engage us. At this time, many questions can be clarified, and processes improved if necessary.

Don't forget to ask about our service packages! These packages offer numerous advantages and ensure that your unit always receives the attention it needs.

Upgrades and Retrofits for a long life of your unit

Like any high-tech unit, PLATIT's PVD units are continuously evolving and improving with each generation. With our upgrade programs, you can add new performance dimensions to existing coating units or bring the productivity of your system up to the latest state-of-the-art.

Retrofit measures allow you to technically rejuvenate unit components in a targeted manner and thus significantly extend the overall service life of the unit. Replacing components such as drives, pumps, sensors or controls can boost efficiency, making your PVD unit even more economical to run. For the first two years, the Premium Plus package guarantees maximum uptime for your coating system, maximum planning reliability, cost transparency, reduced maintenance costs, and improved performance with consistent coating quality.

Cathode exchange – uncomplicated and fast

For our customers we have organized the cathode exchange very conveniently. To avoid storage costs, we take care of the transport of new cathodes and the environmentally friendly recycling of your used targets.

We guarantee the first-class workmanship of the targets and their material quality. Our specialists will be happy to explain to you how the cathodes can be replaced quickly and safely.

By the way: All rotating cathodes in PLATIT's Pi coating units have a lifetime warranty if the cathodes are changed regularly at one of PLATIT's cathode exchange centers.

Cathode exchange centers - close to you

With service organizations in Europe, North America and Asia, we operate 4 Cathode Exchange Centers (CEC) worldwide.

One of them is also near you.

PLATIT SHANGHAI

Service & CEC Asian region

PLATIT Inc. Service & CEC North and South America

No. 161 Rijing Road (Shanghai) PFTZ CN-200131 Pudong Shanghai

1840 Industrial Drive Suite 220

USA

service-cn@platit.com +86 215 833 8069

service-us@platit.com +1 855 475 2848

Libertyville, IL 60048

production conditions.

PLATIT's Lifecycle Management

KOREA

CEC South Korea

SQ Tech Co., Ltd. C-1001, 283 Bupyeong-daero Bupyeong-Gu, Incheon KR-21315 korea@platit.com +82 32 623 7800-6

PLATIT A.S.

Service & CEC All other regions

Průmyslová 3020/3 CZ-78701 Šumperk IN (IČ): 25904795 TAX IN (DIČ): CZ25904795

service-eu@platit.com +420 733 743 733

Sales partners & agents

Brazil

Rastectools Maquinas e Ferramentas Ltda R.Alferes Franco, 714 Salas 3 e 4 – Centro BR-13480-051 Limeira SP brazil@platit.com +55 19 99748 3167

Germany

AR Industrievertretungen Lautlinger Weg 5 DE-70567 Stuttgart germany@platit.com + 49 711 7187 6340

India

Industrial Interface India 3i Z-204 Gokul Garden, Thakur Complex Kandivali (East), IND-400101 Mumbai india@platit.com + 91 9833 6773 08

Israel

TekTeam Ltd. 17, Haganah Street 6023201 Or-Yehuda israel@platit.com +97 236 323 576

Italy

PLATIT Sales Via Ruschetta 2 IT-23898 Imbersago (Lecco) italy@platit.com + 39 349 78 16 747

Japan

YKT CORPORATION 7–5, Yoyogi 5-chome, Shibuya-ku JPN-151-8567 Tokyo japan@platit.com + 81 3 3467 1270

Korea

SQ Tech Co., Ltd. C-1001, 283 Bupyeong-daero Bupyeong-Gu, Incheon KR-21315 korea@platit.com + 82 32 623 7800-6 Fax: + 82 32 623 7807

Mexico

Presotec S.A. Av. del Parque 216 Regio Parque Industrial MX-66600 Cd. Apodaca, N.L. mexico@platit.com + 52 81 8375 4220

Poland

Technolutions Ul. Jana Pawła II 52/56 PL-99-400 Łowicz poland@platit.com + 48 606 440 718

Portugal

Alida Castro LDA Rua do Alto do Cotão 10 Armazém 4 PT-2635-654 Rio de Mouro portugal@platit.com +351 217 785 157

Spain

Technalloy S.A. Calle Amposta 14–16 ES-08174 Sant Cugat del Vallès (Barcelona) spain@platit.com +34 609 539 570

Turkey

Erde Dış Ticaret Ltd. Ş ti. Egitim Mah. Eylül Sk. Aydin Is Mrk. Nr.: 2 D: 4 TR-34722 Hasanpaş a, Kadıköy, İstanbul turkey@platit.com + 90 216 330 2400 VISIT US AT: WWW.PLATIT.COM

Sales network

PLATIT AG

Headquarters Eichholzstrasse 9 CH-2545 Selzach info@platit.com + 41 32 544 62 00

PLATIT AG

Custom Coating Solutions (CCS) Champ-Paccot 21 CH-1627 Vaulruz info@platit.com +41 32 544 62 00

PLATIT a.s.

Production, R&D, Service, CEC Průmyslová 3020/3 CZ-78701 Šumperk info@platit.com + 420 583 241 588

PLATIT Advanced Coating Systems (Shanghai) Co., Ltd

Sales, Service, CEC No. 161 Rijing Road (Shanghai) PFTZ CN-200131 Pudong Shanghai china@platit.com + 86 2158 6739 76

PLATIT Inc.

Sales, Service, CEC 1840 Industrial Drive, Suite 220 Libertyville, IL 60048, US usa@platit.com +1847 680 5270 Fax: +1847 680 5271

PLATIT Scandinavia ApS

Sales Rabalderstraede 7 DK-4000 Roskilde scandinavia@platit.com + 45 46 74 02 38

COMPENDIUM

